Three point function in N=4 SYM from integrability

D. Serban

w/ O. Foda, Y. Jiang, S. Komatsu, I. Kostov, F. Loebbert, A. Petrovskii

Overview

- AdS/CFT dictionary
- Integrability at strong and weak coupling
- All-loop solution for the spectrum from integrability
- Correlation functions: weak coupling vs. strong coupling, the spin vertex
- The bootstrap approach
- Conclusions

Why study the $\mathrm{N}=4$ planar gauge theory?

"more is less": it is simpler than QCD and presumably exactly solvable due to the high amount of symmetry
first example of precise duality with a string theory (type IIB on $\mathrm{AdS}_{\mathbf{5}} \mathbf{x S}^{\mathbf{5}}$) [Maldacena 97; Witten 98; Gubser, Klebanov, Polyakov 98]
although not realized in nature, it can help our understanding of strongly coupled gauge theories

Symmetries

- the beta function is zero, presumably at all orders \longrightarrow the Poincaré group gets promoted to the conformal group $\mathrm{SO}(4,2) \cong \mathrm{SU}(2,2)$
- there are four copies of supersymmetry generators, which are rotated into one another by the R-symmetry $\mathrm{SO}(6) \cong \mathrm{SU}(4)$
- the total symmetry super-group is $\operatorname{PSU}(\mathbf{2 , 2 | 4)}$

$$
\left(\begin{array}{cc}
L, \bar{L}, P, K, D & Q, \bar{S} \\
\bar{Q}, S & R
\end{array}\right)
$$

Dictionary

$$
\mathcal{N}=4 \text { gauge theory }
$$

- fundamental fields: $A_{\mu}, \Phi_{I}(I=1, \ldots, 6), \Psi_{\alpha}(\alpha=1, \ldots, 4)$ and derivatives
- symmetries: - conformal group $S O(2,4) \simeq S U(2,2)$
- R-symmetry $S O(6) \simeq S U(4)$
- supersymmetry \Rightarrow global symmetry: $\operatorname{PSL}(2,2 \mid 4)$

Correspondence
Local operators in the gauge theory

e.g. $\operatorname{Tr}\left(\Phi_{I_{1}} \Phi_{I_{2}} \ldots \Phi_{I_{L}}\right)$	\leftrightarrow	One-string states
Anomalous dimensions	\leftrightarrow	Energy spectrum
R-charges	\leftrightarrow	Angular momenta J_{i}

Integrability

One loop dilatation operator = integrable spin chain
[Minahan, Zarembo, 02]

$$
\begin{aligned}
& Z=\Phi_{1}+i \Phi_{2} \\
& W=\Phi_{3}+i \Phi_{4}
\end{aligned}
$$

$\operatorname{tr} Z Z Z W W Z Z Z W W W Z W Z Z Z Z \ldots$

$$
\begin{gathered}
\hat{D}_{1}=2 \sum_{l=1}^{L}\left(1-P_{l, l+1}\right) \\
\| X
\end{gathered}
$$

solution in terms of Bethe Ansatz equations

String sigma model is
classically integrable
[Bena, Polchinski, Roiban, 02]
$I=-\frac{\sqrt{\lambda}}{4 \pi} \int d \tau d \sigma\left[G_{m m}^{\left(A d S_{3}\right)} \partial_{a} X^{m} \partial^{a} X^{n}+G_{m n}^{\left(S^{5}\right)} \partial_{a} Y^{m} \partial^{a} Y^{n}\right]$

+ fermions
tring solution, e.g.

[Kazakov, Marshakov,
Minahan, Zarembo, 04]
solution of the classical sigma model in terms of an algebraic curve

Integrability

existence of an infinite number of integrals of motion $\left[\mathrm{I}_{\mathrm{m}}, \mathrm{I}_{\mathrm{n}}\right]=0$
factorized scattering (no particle production)

Yang-Baxter equation

$\mathbf{S}_{12} \mathbf{S}_{13} \mathbf{S}_{23}=\mathbf{S}_{23} \mathbf{S}_{13} \mathbf{S}_{12}$

exact solution for some 2 d field theories

[Zamolodchikov, Zamolodchikov, 70ties]
extra difficulty for the AdS/CFT integrable system: lack of relativistic invariance for the excitations of the string in light cone gauge

Integrability: solution of the spectrum

$$
\left\langle\mathcal{O}_{A}(x) \mathcal{O}_{B}(y)\right\rangle=\frac{\delta_{A B}}{|x-y|^{2 \Delta_{A}(\lambda)}}
$$

- the scattering matrix of excitations over the BMN vacuum fixed solely by symmetry [Beisert, 05-06]
the BMN vacuum: $\quad \operatorname{Tr} Z^{\mathrm{L}} \quad$ [Berenstein, Maldacena, Nastase, 02]
breaks the symmetry to the centrally extended $\operatorname{PSU}(2 \mid 2)^{2}$
- crossing equation written down by [Janik, 06] and solved by [Beisert, Eden, Staudacher, 06]
- full solution of the spectral problem via Thermodynamic Bethe Ansatz [Gromov, Kazakov, Vieira, 09] and Riemann-Hilbert problem a.k.a Quantum Spectral Curve (QSC) [Gromov, Kazakov, Leurent, Volin, 13-15]:

Other objects computed using integrability

(Gluon) amplitudes

Wilson loops (lines)

Correlators of local fields

The three point function in $\mathbf{N}=4 \mathbf{S Y M}$

$$
\left\langle\mathcal{O}_{1}(x) \mathcal{O}_{2}(y) \mathcal{O}_{3}(z)\right\rangle=\frac{C_{123}}{|x-y|^{\Delta_{1}+\Delta_{2}-\Delta_{3}}|x-z|^{\Delta_{1}+\Delta_{3}-\Delta_{2}}|y-z|^{\Delta_{2}+\Delta_{3}-\Delta_{1}}}
$$

initial data: three states with definite conformal dimensions and $\operatorname{psu}(2,2 \mid 4)$ charges

$$
\mathcal{O}_{\alpha}(x), \quad \alpha=1,2,3
$$

- each characterized by a set of rapidities

$$
\left\{u_{i, \alpha}=\frac{1}{2} \cot \frac{p_{i, \alpha}}{2} \sqrt{1+16 g^{2} \sin ^{2} \frac{p_{i, \alpha}}{2}}\right\}
$$

$$
\Delta_{\alpha}=L_{\alpha}-M_{\alpha}+\sum_{i=1}^{M_{\alpha}} \sqrt{1+16 g^{2} \sin ^{2} \frac{p_{i, \alpha}}{2}}
$$

efficiently encoded in the zeros of the Baxter functions

$$
\left\{Q_{a}^{\alpha}\left(u ; u_{i, \alpha}\right), \quad a=1, \ldots 8\right\}
$$

- and polarizations (or global rotations with respect to some reference BPS state, e.g $\operatorname{Tr} \mathrm{Z}^{\mathrm{L}}$)

$$
g_{\alpha}=e^{\zeta_{\alpha}^{A} J^{A}}
$$

The three point function at weak coupling

At tree level the three point function can be computed using gaussian contraction
$\longrightarrow \quad$ pure combinatorics

$$
\begin{aligned}
& =\langle\bar{Z}(x) Z(y)\rangle & \sim \frac{1}{|x-y|^{2}} \\
-\mathbf{- - -} & \langle\bar{X}(x) X(y)\rangle & \sim \frac{1}{|x-y|^{2}}
\end{aligned}
$$

Spin chain language: the combinatorics can be expressed in terms of scalar products of states of (pieces of) spin chain [Roiban, Volovich, 04]

- use Algebraic Bethe Ansatz (ABA) to build and cut the chains into pieces
\longrightarrow "tailoring" of spin chains [Escobedo, Gromov, Sever, Vieira, 10]

The three point function at weak coupling

Cutting the chains into pieces generates sums over partitions of magnons
Resumming the contribution of magnons and taking the limit of large number of magnons are among the open problems.

In some special cases these sums can explicity taken, and obtain determinant representations [Foda, 11] whose semiclassical limit is rather straightforward [Escobedo, Sever, Vieira, 11; Kostov, 12; Kostov, Bettelheim, 14]
e.g. in some of the su(2) sector at tree level and one loop [Jiang, Kostov, Loebbert, DS, 14] the semiclassical limit is

$$
\begin{aligned}
\log C_{123}(g) \simeq & \oint_{\mathcal{C}^{(12 \mid 3)}} \frac{d u}{2 \pi} \operatorname{Li}_{2}\left(e^{i p^{(1)}(u)+i p^{(2)}(u)-i p^{(3)}(u)}\right) \\
& +\oint_{\mathcal{C}^{(13 \mid 2)}} \frac{d u}{2 \pi} \operatorname{Li}_{2}\left(e^{i p^{(3)}(u)+i p^{(1)}(u)-i p^{(2)}(u)}\right)-\frac{1}{2} \sum_{a=1}^{3} \int_{\mathcal{C}^{(a)}} \frac{d z}{2 \pi} \operatorname{Li}_{2}\left(e^{2 i p^{(a)}(z)}\right)
\end{aligned}
$$

in agreement with strong coupling computations [Kazama, Komatsu, 13 \& unpublished]
Similar expressions for some special cases of higher rank, su(3) cases [Foda, Jiang, Kostov, DS, 13]

The three point function at weak coupling

We expect to get similar expressions for general three point functions at higher rank and higher loop order
[Kazama, Komatsu, 13]
fermionic representations (\sim partition function for relativistic fermions)?
methods based on Sklyanin's Separation of Variables
-> integral representattion [Jiang, Komatsu, Kostov, DS, 15]
generic su(2) three point function:
six vertex partition function on a lattice with a conical defect

The string vertex (strings in the pp-wave limit)

Simple configuration at strong coupling: near-extremal configuration with one string of length J_{3} spliting into two strings of length J_{1} and J_{2} with $\mathrm{J}_{3}=\mathrm{J}_{1}+\mathrm{J}_{2}$
with transverse excitations with polarizations $j=1, \ldots, 8$

[Spradlin, Volovich, 02-03; Dobashi, Yoneya, Shimada, 04;...]
BMN excitations: (dilute gas of magnons with momentum $\sim 1 / \mathrm{L}$)
modes (massive bosons/fermions): $\quad E=J+\sum_{k} \sqrt{1+\frac{\pi \lambda n_{k}^{2}}{L^{2}}}$
the S matrix in the BMN limit is trivial: $\quad S\left(p_{1}, p_{2}\right)= \pm 1$
$a_{n}^{(s) j \dagger}$ creates excitation with momentum $p=\frac{2 \pi n}{J_{s}}$ in the s-th string

The string vertex (strings in the pp-wave limit)

$$
C_{123}=f\left(\Delta_{1}, \Delta_{2} \Delta_{3}\right)\langle 1|\langle 2|\left\langle 3 \mid V_{3}\right\rangle
$$

string vertex state:

$$
\left|V_{3}\right\rangle=\mathcal{P}\left|E_{a}\right\rangle,
$$

where

$$
\left|E_{a}\right\rangle=\exp \left(-\frac{1}{2} \sum_{i=1}^{8} \sum_{r, s=1}^{3} \sum_{m, n=-\infty}^{\infty} a_{m}^{(r) i \dagger} \widetilde{N}_{m n}^{r s} a_{n}^{(s) i \dagger}\right)|0\rangle
$$

and \mathcal{P} is a polynomial in the creation/annihilation operators.
comparison with the computation at weak coupling in the BMN limit: agreement at the leading order; disagreement at one loop [Schulgin, Zayakin, 13]

The spin vertex

A structure similar to the string vertex can be built at weak coupling, too [Alday, David, Gava, Narain, 05; Y. Jiang, I. Kostov, A. Petrovskii, D.S., 14 Y. Kazama, S. Komatsu, T. Nishimura 14-15]

At tree level the spin vertex mimics the planar Wick contractions $\longrightarrow \quad$ combining incoming states into singlets
all the three states are treated equally

$$
\sum_{a}|a\rangle \otimes|\bar{a}\rangle
$$

Constructing the singlet states

a is a state in a particular lowest weight module V_{+}of $\operatorname{psu}(2,2 \mid 4)$

$$
a=Z, X, Y, \bar{Z}, \bar{X}, \bar{Y}+\text { fermions, derivatives, etc }
$$

since $\operatorname{psu}(2,2 \mid 4)$ is non-compact \bar{a} should be in the highest weight module $\mathbf{V}_{\text {. of }}$ dual to \mathbf{V}_{+}

- Build \mathbf{V}_{+}and \mathbf{V}. via the oscillator representation (spin chain language)
[Bars, Gunaydin, 83,...]

The oscillator representation

emphasizing the maximally compact subalgebra $\operatorname{su}(2) \times \operatorname{su}(2) \times u(1) \times \operatorname{su}(4)$
$\left[a_{i}, a_{j}^{\dagger}\right]=\delta_{i j}, \quad\left[b_{i}, b_{j}^{\dagger}\right]=\delta_{i j}, \quad\left\{c_{k}, c_{l}^{\dagger}\right\}=\delta_{k l}, \quad i, j=1,2, \quad k, l=1, \ldots, 4$.
optional particle-hole transformation $\quad d_{i}=c_{i+2}^{\dagger}, \quad d_{i}^{\dagger}=c_{i+2} \quad i=1,2$
$\mathrm{u}(2,2 \mid 4)$ generators (spin chain) $\quad E^{A B}=\bar{\psi}^{A} \psi^{B}$

$$
\psi=\left(\begin{array}{llll}
a_{i} & -b_{i}^{\dagger} & c_{i} & d_{i}^{\dagger}
\end{array}\right), \quad \bar{\psi}=\left(\begin{array}{llll}
a_{i}^{\dagger} & b_{i} & c_{i}^{\dagger} & d_{i}
\end{array}\right)
$$

$\operatorname{psu}(2,2 \mid 4)$: vanishing central central charge condition:

$$
\sum_{A} E^{A A}=\sum_{i=1,2}\left(N_{a_{i}}-N_{b_{i}}+N_{c_{i}}-N_{d_{i}}\right)=0
$$

The spin vertex

there exists a non-unitary (Wick-like) rotation U which transforms a direction of positive signature (5) into one of negative (0) signature and viceversa

$$
\begin{aligned}
\eta_{P Q}^{\mathrm{D}}=\operatorname{diag} & (-+++\mid+-) \\
& \uparrow \downarrow U=\exp -\frac{\pi}{2} M_{05}=\exp -\frac{\pi}{4}\left(P_{0}-K_{0}\right)
\end{aligned}
$$

$$
\eta_{P Q}^{\mathrm{E}}=\operatorname{diag}(++++\mid--) \quad[\text { Alday, David, Gava, Narain, 05; Govil, Günaydin, 13] }
$$

at tree level:

$$
U=\exp -\frac{\pi}{4} \sum_{i=1,2}\left(a_{i}^{\dagger} b_{i}^{\dagger}+a_{i} b_{i}\right)
$$

transformed oscillators
(Bogoliubov-like transformation):

$$
\begin{array}{ll}
\lambda_{\alpha} \equiv U a_{\alpha} U^{-1}=a_{\alpha}-b_{\alpha}^{\dagger}, & \widetilde{\lambda}_{\dot{\alpha}} \equiv U b_{\alpha} U^{-1}=b_{\alpha}-a_{\alpha}^{\dagger} \\
\mu_{\alpha} \equiv U a_{\alpha}^{\dagger} U^{-1}=a_{\alpha}^{\dagger}+b_{\alpha}, & \widetilde{\mu}_{\dot{\alpha}} \equiv U b_{\alpha}^{\dagger} U^{-1}=b_{\alpha}^{\dagger}+a_{\alpha}
\end{array}
$$

- "D-scheme" [Kazama, Komatsu, Nishimura, 15]: the action of the conformal group is manifest

The \boldsymbol{U}^{2} transformation

the operator U^{2} realizes a PT transformation (changes the sign of x_{0} and x_{5}) transforms positive energy state into negative energy states

$$
U^{-2} D U^{2}=-D \quad \text { all loop property }
$$

- positive energy (lowest weight) module \mathbf{V}_{+}: built on the oscillator vacuum

$$
|0\rangle=|0\rangle_{B} \otimes|0\rangle_{F} \quad\left(a_{i}, b_{i}, c_{i}, d_{i}\right)|0\rangle=0
$$

- negative energy (highest weight) module \mathbf{V}. : built on the dual vacuum

$$
|\overline{0}\rangle=|\overline{0}\rangle_{B} \otimes|\overline{0}\rangle_{F} \quad\left(a_{i}^{\dagger}, b_{i}^{\dagger}, c_{i}^{\dagger}, d_{i}^{\dagger}\right)|\overline{0}\rangle=0
$$

bosonic particle-hole transformation implemented by U^{2} $|\overline{0}\rangle_{B}=U^{2}|0\rangle_{B}$
necessary to construct the $\mathrm{psu}(2,2 \mid 4)$ singlets

Two-point function and the "vertex"

Operator-state correspondence (E-scheme):

$$
\begin{array}{r}
\mathcal{O}(x)=e^{i P x} \mathcal{O}(0) e^{-i P x} \\
\left\langle\mathcal{O}_{2}^{\dagger}(y) \mathcal{O}_{1}(x)\right\rangle=\left\langle\mathcal{O}_{2}\right| U^{\dagger} e^{i P(x-y)} U\left|\mathcal{O}_{1}\right\rangle
\end{array}
$$

Flip the outgoing state into an incoming state and pair the two states into the singlet $\left\langle\mathcal{V}_{12}\right|$:
$\left|\mathcal{O}_{2}\right\rangle$

> à la [EGSV, 10]

$$
\left\langle\mathcal{O}_{2}^{\dagger}(y) \mathcal{O}_{1}(x)\right\rangle=\left\langle\mathcal{V}_{12}\right| e^{i\left[L_{(1)}^{+} x+L_{(2)}^{+} y^{y]}\right.}\left|\overline{\mathcal{O}}_{2}\right\rangle^{(2)} \otimes\left|\mathcal{O}_{1}\right\rangle^{(1)}
$$

$U^{-1} P_{\mu} U=L_{\mu}^{+}$

Two-point function and the "vertex"

Tree level: Wick contractions:

[Alday, David, Gava, Narain, 05]
delta function-like expression

$$
\begin{aligned}
& \left|\mathcal{V}_{12}\right\rangle=\sum_{N_{a}, N_{b}, N_{c}, N_{d}}\left|N_{a}, N_{b}, N_{c}, N_{d}\right\rangle{ }^{(2)} \otimes\left|\bar{N}_{a}, \bar{N}_{b}, \bar{N}_{c}, \bar{N}_{d}\right\rangle^{(1)} \\
& \left|N_{a}, N_{b}, N_{c}, N_{d}\right\rangle=\frac{1}{\sqrt{N_{a}!N_{b}!}} \prod_{k=1,2}\left(d_{k}^{\dagger}\right)^{N_{d_{k}}\left(c_{k}^{\dagger}\right)^{N_{c_{k}}}\left(b_{k}^{\dagger}\right)^{N_{b_{k}}}\left(a_{k}^{\dagger}\right)^{N_{a_{k}}}|0\rangle,} \\
& \left|\bar{N}_{a}, \bar{N}_{b}, \bar{N}_{c}, \bar{N}_{d}\right\rangle=\frac{(-1)^{N_{a}+N_{c}}}{\sqrt{N_{a}!N_{b}!}} \prod_{k=1,2} a_{k}^{N_{a_{k}}} b_{k}^{N_{b_{k}}} c_{k}^{N_{c_{k}}} d_{k}^{N_{d_{k}}}|\overline{0}\rangle
\end{aligned}
$$

Two-point function and the "vertex"

$$
\begin{gathered}
\left|\mathcal{V}_{12}\right\rangle=\exp -\sum_{s=1}^{L} \sum_{i=1,2}\left(a_{i, s}^{(1)} a_{i, s}^{(2) \dagger}-b_{i, s}^{(1)} b_{i, s}^{(2) \dagger}+d_{i, s}^{(1)} d_{i, s}^{(2) \dagger}-c_{i, s}^{(1)} c_{i, s}^{(2) \dagger}\right)|0\rangle^{(2)} \otimes|\overline{0}\rangle^{(1)} \\
\left|\mathcal{V}_{12}\right\rangle=\sum_{N_{a}, N_{b}, N_{c}, N_{d}}\left|N_{a}, N_{b}, N_{c}, N_{d}\right\rangle^{(2)} \otimes\left|\bar{N}_{a}, \bar{N}_{b}, \bar{N}_{c}, \bar{N}_{d}\right\rangle^{(1)}
\end{gathered}
$$

the exponential form includes states with arbitrary (integer) central charge C_{s} at each site s
the simple form is introduces at the expenses of enlarging the Hilbert space one can easily project on the $\mathrm{C}_{s}=0$ modules; these are automatically selected when projected on the incoming states respecting this condition

$$
\begin{gathered}
\text { main property: local psu(2,2|4) symmetry } \\
\left(E_{s}^{A B(1)}+E_{s}^{A B(2)}+(-1)^{|B|} \delta^{A B}\right)\left|\mathcal{V}_{12}\right\rangle=0, \quad s=1, \ldots L .
\end{gathered}
$$

proven using the action of the oscillators on the vertex

Three-point function and the vertex

straightforward generalization to the three point function at tree level (one singlet for every "bridge" ij)

$$
\begin{aligned}
\left|\mathcal{V}_{123}\right\rangle & =\left|\mathcal{V}_{12}\right\rangle \otimes\left|\mathcal{V}_{13}\right\rangle \otimes\left|\mathcal{V}_{32}\right\rangle \\
\left|\mathcal{O}_{1}\right\rangle & \simeq\left|\mathcal{O}_{13}\right\rangle \otimes\left|\mathcal{O}_{12}\right\rangle, \\
\left|\mathcal{O}_{2}\right\rangle & \simeq\left|\mathcal{O}_{21}\right\rangle \otimes\left|\mathcal{O}_{23}\right\rangle \\
\left|\mathcal{O}_{3}\right\rangle & \simeq\left|\mathcal{O}_{32}\right\rangle \otimes\left|\mathcal{O}_{31}\right\rangle .
\end{aligned}
$$

$$
\left\langle\mathcal{O}_{2}(y) \mathcal{O}_{3}(z) \mathcal{O}_{1}(x)\right\rangle=\left\langle\mathcal{V}_{123}\right| e^{i\left[L_{(1)}^{+} x+L_{(2)}^{+} y+L_{(3)}^{+} z\right]}\left|\mathcal{O}_{2}\right\rangle \otimes\left|\mathcal{O}_{3}\right\rangle \otimes\left|\mathcal{O}_{1}\right\rangle
$$

Local symmetry vs. Yangian symmetry

promote the local symmetry to Yangian symmetry

$$
\begin{equation*}
\left(E_{s}^{A B(1)}+E_{s}^{A B(2)}+(-1)^{|B|} \delta^{A B}\right)\left|\mathcal{V}_{12}\right\rangle=0, \quad s=1, \ldots L \tag{*}
\end{equation*}
$$

start by defining the monodromy matrix (which generates the Yangian)

Lax matrix at site $s: \quad \quad L_{s}(u)=u-i / 2-i(-1)^{|A|} E_{0}^{A B} E_{s}^{B A}$
auxiliary space in defining, (4|4) representation

$$
\begin{gathered}
\left(E_{0}^{A B}\right)_{C D}=\delta_{C}^{A} \delta_{D}^{B} \\
E_{s}^{A B}=\bar{\psi}_{s}^{A} \psi_{s}^{B}
\end{gathered}
$$

quantum space in the oscillator representation

Monodromy condition for the vertex

the vertex (singlet) is also an Yangian invariant for the monodromy matrix
$T_{12}(u)$

it is sufficient to prove the above relation for two chains of one site

Monodromy condition for the vertex

proof of the monodromy relation for two sites 1 and 2
(with the auxiliary space 0 in the defining representation)

R matrix $\quad R_{01}(u)=u-i \Pi_{01} \equiv L_{1}(u+i / 2)$
with the graded "permutation" $\quad \Pi_{01}=(-1)^{|A|} E_{0}^{A B} E_{1}^{B A}$

$$
\Pi_{01}^{2}=c+(c-1) \Pi_{01}
$$

$$
c=E_{1}^{B B}
$$

$$
c=0 \text { for } \operatorname{psu}(2,2 \mid 4)
$$

$c=1$ for $\operatorname{su}(2)$

1) unitarity condition

$$
R_{01}(u) R_{01}(i(c-1)-u) \sim 1
$$

2) symmetry of the vertex $\quad R_{02}(u)\left|\mathcal{V}_{12}\right\rangle=-R_{01}(-i-u)\left|\mathcal{V}_{12}\right\rangle$

$$
R_{01}(u) R_{02}(u-i c)\left|\mathcal{V}_{12}\right\rangle \sim\left|\mathcal{V}_{12}\right\rangle
$$

Monodromy condition for the vertex

$$
R_{01}(u) R_{02}(u-i c)\left|\mathcal{V}_{12}\right\rangle \sim\left|\mathcal{V}_{12}\right\rangle
$$

the monodromy condition depends on the sector through the value of c in the full $\operatorname{psu}(2,2 \mid 4)$ there is no relative shift in the rapidity $c=0$ the significance of this fact not fully understood (relation to crossing?)
monodromy relation for three chains:

strong coupling semiclassical equivalent:

$$
\Omega_{1}(u) \Omega_{2}(u) \Omega_{3}(u)=1
$$

[Kazama, Komatsu, 13]
monodromy in physical space [Kazama, Komatsu, Nishimura, 15] \rightarrow conserved charges

Three point function at all loop from bootstrap

[Basso, Komatsu, Vieira, 15]

hexagon contribution should satisfy form-factor like axioms and symmetry requirements minimal solution conjectured which passes comparison with known cases

Conclusion and outlook

- various integrability-based methods used to determine the three point function in different limits
- we have built a weak coupling version of the string vertex based on the oscillator representation of psu(2,2|4) [Y. Jiang, I. Kostov, A. Petrovskii, D.S., 14; Y. Kazama, S. Komatsu, T. Nishimura 14-15]
- adapted for the spin chain language and perturbative computations; complementary to the hexagon bootstrap method [Basso, Komatsu, Vieira, 15]
- implementation of the symmetries at tree level/monodromy condition
- performing the sums in the hexagon approach and take the semiclassical limit (small parameter:
$1 / \mathrm{L}$); connection with fermion partition functions, Mayer expansion, etc.
- implement a general Quantum Spectral Curve-like approach for the three point function

