Threepoint function in N=4 SYM from
Integrability

D. Serban

w/ O. Foda, Y. Jiang, S. Komatsu, |. Kostov, F. Loebbert, A. Petrovskii

}?at{ S a> lntegrai:]é Systermy Bucharest, GAP seminar
\ August 27, 2015

Thursday, August 27, 15



Overview

e AdS/CFT dictionary
e Integrability at strong and weak coupling
e All-loop solution for the spectrum from integrability

e Correlation functions: weak coupling vs. strong coupling, the spin vertex
e The bootstrap approach
e Conclusions
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Why study the N=4 planar gauge theory?

“moreisless’: it issimpler than QCD and presumably exactly solvable
dueto the high amount of symmetry

first example of precise duality with a string theory (typellB on AdSs xS°)
[Maldacena 97; Witten 98; Gubser, Klebanov, Polyakov 98]

although not realized in nature, it can help our understanding of strongly coupled
gaugetheories
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Symmetries

- the beta function is zero, presumably at all orders ——  the Poincaré group gets
promoted to the conformal group SO(4,2) = SU(2,2)

- there are four copies of supersymmetry generators, which are rotated into one another
by the R-symmetry SO(6) = SU(4)

- the total symmetry super-group is PSU(2,2|4)
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Dictionary

N = 4 gauge theory
e fundamental fields: A,,®; (I =1,...,6), ¥o(a=1,...,4) and derivatives

e symmetries: — conformal group SO(2,4) ~ SU(2,2)
— R-symmetry SO(6) ~ SU(4)
— supersymmetry = global symmetry: PSL(2,2[4)

Correspondence

Local operators in the gauge theory

e.g. Tr(®r,®r,..Pr,) — One-string states
Anomalous dimensions — Energy spectrum
R-charges > Angular momenta, J;
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[Lipatov, 98] I ntegrability

One loop dilatation operator String sigma model
= 1S
Integrable spin chain classically integrable
[Minahan, Zarembo, 02] [Bena, Polchinski, Roiban, 02]
/ —55 drdo | G959 g, X™ & X" + GV g, Y™ §°Y " |
7 = ®y + id, ir | 4% (G BX"TX" + Corn & |
W = &3 + 1Py - fermions

Wty LZLZIWWZZIWWWIZIWZZZZ ...

\y ::()

q | P <—> string solution, e.q. ~ Y=y,
vy, LFTOlOV, Tseytlin, 02]

L

Dy = 22(1 — Pr141)

[

=1 [K azakov, M ar shakov,
ll >< Minahan, Zarembo, 04]

¢ 5 solution of the classical sgmamodel in

solution in terms of Bethe Ansatz equations terms of an algebraic curve
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| ntegrability

existence of an infinite number of

integrals of motion [Im,]=0 factorized scattering (no particle

production)

Yang-Baxter equation

S12 S13 3= Sp3 S13 Si

1 2 3 1 2 3

exact solution for some 2d field theories [Zamolodchikov, Zamolodchikov, 70ties]

extra difficulty for the ADS/CFT integrable system: lack of relativistic invariance for the excitations
of the string in light cone gauge
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| ntegrability: solution of the spectrum

(O4(2)Op(y)) = — A7

o=y A0

- the scattering matrix of excitations over the BMN vacuum fixed solely by symmetry [Beisert, 05-06]

the BMN vacuum: TrZ- [Berenstein, Maldacena, Nastase, 02]
breaks the symmetry to the centrally extended PSU(2]2)>

- crossing equation written down by [Janik, 06] and solved by [Beisert, Eden, Staudacher, 06]

- full solution of the spectral problem via Thermodynamic Bethe Ansatz [Gromov, Kazakov, Vieira, 09]
and Riemann-Hilbert problem a.k.a Quantum Spectral Curve (QSC) [Gromov, Kazakov, L eurent,
Volin, 13-15]:

Thursday, August 27, 15



Other objects computed using integrability

(Gluon) amplitudes Wilson loops (lines)

Correlators of local fields
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Thethreepoint function in N=4 SYM

CY123
<01(3])02(y)03(2)> - ’ZE _ y’A1+A2_A3|CI] _ Z|A1—|—A3—A2|y _ Z‘A2+A3—A1

Initial data: three states with definite conformal dimensions and psu(2,2|4) charges

O.xX), a=1273

. T 1 1,Q - 1,Q
@® coch characterized by aset of rapidities {u;q = 5 cot p2, \/ 1 + 1692 sin’ pz’ by
M. p
— _ 2 qin2 Mhe
A, =L, Ma+;\/l+l6g sin? =
efficiently encoded in the zeros of the Baxter functions {Qa(u;uin), a=1,...8}

@® andpolarizations (or global rotations with respect to some reference BPS state, e.g Tr Z4)

AqA
PN

Qo = €°
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Thethree point function at weak coupling

At tree level the three point function can be computed using gaussian contraction

—>  pure combinatorics

— (200zW) ~ 5

----- (X)X (y)) ~

X —y|?

Spin chain language: the combinatorics can be expressed in terms of scalar products of states of
(pieces of) spin chain [Roiban, Volovich, 04]

@® useAlgebraic Bethe Ansatz (ABA) to build and cut the chains into pieces

—> “tailoring” of spin chains [Escobedo, Gromov, Sever, Vieira, 10]
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Thethree point function at weak coupling

Cutting the chains into pieces generates sums over partitions of magnons

Resumming the contribution of magnons and taking the limit of large number of magnons are
among the open problems.

In some special cases these sums can explicity taken, and obtain determinant representations

[Foda, 11] whose semiclassical limit is rather straightforward [Escobedo, Sever, Vieira, 11; Kostov,
12; Kostov, Bettelheim, 14]

e.g. in some of the su(2) sector at tree level and one loop [Jiang, Kostov, L oebbert, DS, 14] the
semiclassical limitis

du

log C123(g) ~ ]{ 5 Liz(e PP WP W —ipD (W)

c(@dz2[3)

N[

7{ U L (PP @) _ 1§ / g_zl_iz(e”p(a’@)
s

c(1312) a=1

IN agreement with strong coupling computations [K azama, Komatsu, 13 & unpublished]

Similar expressions for some special cases of higher rank, su(3) cases [Foda, Jiang, Kostov, DS, 13]
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Thethree point function at weak coupling

We expect to get ssimilar expressions for general three point functions at higher rank and higher

loop order [Kazama, Komatsu, 13]

fermionic representations (~ partition function for relativistic fermions)?

methods based on Sklyanin’s Separation of Variables
-> integral representattion [Jiang, Komatsu, Kostov, DS, 15]

generic su(2) three point function:
six vertex partition function on alattice
with a conical defect
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Thestring vertex (stringsin the pp-wave limit)

Simple configuration at strong coupling: near-extremal configuration with one string of length Js
spliting into two strings of length J1 and - with k =J1 +X

with transverse excitations with polarizationsj =1,...,8

7\ x
) :

BMN excitations. (dilute gasof magnons with momentum ~1/L)

[Spradlin, Volovich, 02-03; Dobashi, Yoneya, Shimada, 04;... |

. . )\nz
modes (massive bosons/fermions): E=J+ Z \/ 1+ WLZ k
k

the Smatrix inthe BMN limit istrivial: S(py, p2) = %1

a7 creates excitation with momentum p = 232” In the s-th string
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Thestring vertex (stringsin the pp-wave limit)

C123 — f(Al, A2A3)<1|<2|<3|V3>

7%
\
X
Q,/\\

string vertex state:

V3) = P|E,),
where
1 8 3 00 s |
B ) P I I
1=1 r,s=1l mmn=—o0

and P is a polynomial in the creation/annihilation operators.

comparison with the computation at weak coupling in the BMN limit: agreement at the leading
order; disagreement at one loop [Schulgin, Zayakin, 13]
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The spin vertex

A structure similar to the string vertex can be built at weak coupling, too
[Alday, David, Gava, Narain, 05; Y. Jiang, |. Kostov, A. Petrovskii, D.S., 14
Y. Kazama, S. Komatsu, T. Nishimura 14-15]

On) 03) 1O02) Vi23)

At tree level the spin vertex mimics the planar Wick contractions

—> combining incoming states into singlets m

a a

al the three states are treated equally > lay® [a)
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Constructing the singlet states

—~

a a

D la)® @)

alsadtate in a particular lowest weight module V+ of psu(2,24)

a=272 XY, Z_, )Z,\? + fermions, derivatives, etc

since psu(2,2/4) is non-compact a should be in the highest weight module V. of dual to V+

- Build V+ and V- viathe oscillator representation (spin chain language) [Bars, Gunaydin, 83,.. ]
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Theoscillator representation

emphasizing the maximally compact subalgebra su(2) x su(2) x u(1) x su(4)

i, al] =4y, [bi,b]1=6;5, {ok.c}=da, ,i=12, klI=1,....4.

optional particle-holetransformation ~ dj =c¢!,,, di=cj.2 i=1,2

u(2,2|4) generators (spin chain) EAB — JA B

v=(a —b ¢ d), J:(a;r by ¢ di)

psu(2,2|4): vanishing central central charge condition:

ZEAA = Z(Nai — Np; + N¢; — Ng;) =0
A

1=1,2
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The spin vertex

there exists a non-unitary (Wick-like) rotation U which transforms a direction of positive signature (5)
Into one of negative (0) signature and viceversa

77F[>)Q = diag(— + + +|+—)
1 I U =exp—gM05=exp—%(Po—Ko)

npo = diag(+ + + +|——) [Alday, David, Gava, Narain, 05; Govil, Glinaydin, 13]

I : _ T 1.1
a tree level U =exp—y Z (alb! + ajb;)
1=1,2
. _ —1 t N —1 t
transformed oscillators M=Ua,U " =a,—-b,, Aa=Ub, U™ =b,—a,,

(Bogoliubov-liketransformation): |, — yaly-t=al +h,, f,=Ub U l=b +a,

e “D-scheme’ [Kazama, Komatsu, Nishimura, 15]: the action of the conformal group is
manifest
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The U? transfor mation

the operator U? realizes a PT transformation (changes the sign of xo and xs)

transforms positive energy state into negative energy states
U—?DU?=-D all loop property
e positive energy (lowest weight) module V -+ : built on the oscillator vacuum

10) =10)s ® |0)F (ai, bi, ci, d;)|0) =0

e negative energy (highest weight) module V- : built on the dual vacuum

0) = [0)s ® [0V (aj. b}, ;. d})[0) = 0

bosonic particle-hole transformation implemented by U2 0)g = U?|0)g

necessary to construct the psu(2,2|4) singlets
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Two-point function and the “ vertex”

Operator-state correspondence (E-scheme):

O(X) — eiPXO(O)e—iPX —

eiPXU |O>

(05(y)01(x)) = (O2|UTeP*Uy|0O,)

Flip the outgoing state into an incoming state
and pair the two states into the singlet (V12| :

ala[EGSV, 10]

Os)

|O1)

S

|O1)

(O3(¥)O1(X)) = (Vyy| ellbayx*LeyY] 10,)@ ©0,)®
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Two-point function and the “ vertex”

Tree levea: Wick contractions:

=~ M

|O1) |O2) V12)

1,S IS IS 1,S 1,S 7I,S IS 1,S

L
|V12) = exp — Z Z ( aW @ _ W@t L JOy@T _ (D), (Z)T) |O>(2) R |O>(1)
=1,2

U)
|_\

2 2 1
0@ e 0)® = (0P 20)?) o (0P e...c0)P)

_ _ _ [Alday, David, Gava, Narain, 05]
delta function-like expression

Vi) = > INaNo Ne,Ng)®@ @ [Na, N, Ne, Ne) @
Na,Np,Nc,Ng

INa, Nb, Ng, Ng) = [T (AN (c)Now (o) Nex (ag)Nax [0)

”Nal Nb k=1,2
(—1)NaNe

VN Np! kgz K

|Na, Nb1 NC1 Nd> Nde::Idk |6> |
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Two-point function and the “ vertex”

L
IVi2) = exp — Z Z ( (1) (2)T b(l)b(Z)T + d(l)d(2)T (1) (2)T) |O>(2) R |O>(1)

s=11=1,2

Vi) = 3 INaNoNeoNg)®@ @ [Na, Ny, Ne, Ng) @
Na,Nb,Nc,Nd

the exponential form includes states with arbitrary (integer) central charge Csat each site s

the ssmple form isintroduces at the expenses of enlarging the Hilbert space

one can easlly project on the Cs = 0 modules; these are automatically selected when projected on
the iIncoming states respecting this condition

main property: local psu(2,2|/4) symmetry

(EQB“) + EABD 4 (—1)|B|5AB) Vi) =0, s=1,...L.

proven using the action of the oscillators on the vertex
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Three-point function and the vertex

straightforward generalization to the three point function at tree level
(one singlet for every “bridge” ij)

|V123) = |V12) ® [V13) ® |V32)

i[L’ x+L7"

(02(y)03(2)01()) = (Vags| 0" -@|0,) © |03) ® |01)
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L ocal symmetry vs. Yangian symmetry

promote the local symmetry to Yangian symmetry

(ELB® + ELBD 4+ (“1)BIA8) Vi) =0,  s=1..L. ()
start by defining the monodromy matrix (which generates the Yangian)
Tu)=Ly(uw...L (u)
| | | L1 | |
a [ | 1 [
1 2 3 S L
Lax matrix at site s: L.(u) =u—i/2 —i(-1)AESBEBA
auxiliary space in defining, (4|4) representation (E{P)ep = 6565

quantum space in the oscillator representation EAB = AP
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M onodromy condition for the vertex

the vertex (singlet) is also an Yangian invariant for the monodromy matrix ~ T12(u)

B S, N . oo
. LR . e . Y
. S e .- .~ . . S
g . . -- N [y . . N N .
) oo . . .- .~ . . . \ . B ” . .- ~. . LSS N
K ;e , . . N . A AU R g , . L .~ N N (R
.o B . . Y . AN . CORY A — K g . . . I . oo v
o s S .- ~. . oo N R L= -~ . S
. L R co . s LR S — A oo, DAY S O N -
) ‘ . e . P . N ;. ammm— . (O T
[ RN - ~. Y Voo Y L .- ~ N v VL
[ a0t ‘ . v ' L ' ‘ . v '
' ' D * s o L . Y A ‘ v H
P ooy . - . U S T T . .o ! e LY s Voo
I S L S T T
|’ |. |‘ | |‘ |‘ | |' I’ |‘ |‘ | I |‘ I I I |‘ | I I | I | | I I I I | | I I I I I
]_ 2 soee I L ceec 2 1

12 ... L L ceee 021

T12(U)|V12) = F(U)|V12)

It is sufficient to prove the above relation for two chains of one site
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M onodromy condition for the vertex

proof of the monodromy relation for two sites 1 and 2
(with the auxiliary space O in the defining representation)

R matrix Roi(u) =u —illp; = L1(u +1/2)
with the graded “permutation” Tl = (—1)AESBEBA

IT5; = ¢+ (c — DIl c = Ep°

c =0for psu(2,2/4)

c=1for su(2)
1) unitarity condition Ro1(WRgp1(I(c—1) —u) ~ 1

2) symmetry of the vertex Ro2(U)|V12) = —Ro1(—i — u)|V12)

Ro1(U)Ro2(U — ic)[V12) ~ [V12)
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M onodromy condition for the vertex

Ro1(U)Ro2(U — ic)|V1z) ~ [V12)

the monodromy condition depends on the sector through the value of ¢
In the full psu(2,2|4) there isno relative shift intherapidity ¢ =10

the significance of this fact not fully understood (relation to crossing?)

monodromy relation for three chains:

P e T TSl . . . .
e B h gron Cou I I Hnl Cl m Cal ul Val mt.
e T T T L N Seel ~ I I .
2 - - ~~ ~ S
/ e ~ S A
, S T e ——— ~ N N
e L C S S, \
. “ ~ .
\
/ -
/ % - - o ~ ~ . .
/ / , 2T mmmmmmmmm——— ~ N \ \
/ / , e - ~~x ~ . \ \
/ / S - o S~ . AN \ \
/ / ; L - S~ N \ \ \
‘ / / ; - ~ \ . \ \
! ! / s - S~ ™, \ \ \
’ ’ / , - . \ \ \ \
/ / / / L N \ \ \ \ —
/ / / / s . A \ \ \ —
/ / ST N \, N \ \ \
/ / e ~o ==~ N \ \ \ \ \
/ . ~ \ \ \
/ , L ~ , ~ \, \ \ \ \
/ / \ / \ 3, \ \ 1 H
———— \ \ \ 1
i ] ’ / N, / Lo \ \ \ | \ i
::::: Y ! , , \ \ \ \ [ 1
1 / A \ ; ; \ \ \ \ Voo
N / LAY \ \

1 4 e
///////
:::::::::::
,,,,,,,
1

Tias() HHHHHHHH—HHHHHH—H - [Kazama, Komatsu, 1]

monodromy in physical space [Kazama, Komatsu, Nishimura, 15] = conserved charges
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Three point function at all loop from bootstrap

[Basso, Komatsu, Vieira, 15]

virtual excitations
propagationg in the mirror channel

pants decomposition into two hexagons
(worldsheets with conical defect)

physical excitations
(magnons)

’ Q .
Ciz = Z Z 3 X R Y ) —Eg@ijlij

N4

hexagon contribution should satisfy form-factor like axioms and symmetry requirements

minimal solution conjectured which passes comparison with known cases
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Conclusion and outlook

e various integrability-based methods used to determine the three point function in different limits
e we have built aweak coupling version of the string vertex based on the oscillator representation
of psu(2,2/4) [Y. Jiang, |. Kostov, A. Petrovskii, D.S,, 14; Y. Kazama, S. Komatsu, T. Nishimura 14-15]
e adapted for the spin chain language and perturbative computations, complementary to the
hexagon bootstrap method [Basso, Komatsu, Vieira, 15]

e Implementation of the symmetries at tree level/monodromy condition

e performing the sums in the hexagon approach and take the semiclassical [imit (small parameter:
1/L); connection with fermion partition functions, Mayer expansion, etc.

e implement a general Quantum Spectral Curve-like approach for the three point function
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