M-theory foliated backgrounds and non-commutative geometry

Mirela Babalic

(joint work with Calin Lazaroiu)

Geometry and Physics group
(http://events.theory.nipne.ro/gap/)
Department of Theoretical Physics, IFIN-HH

April 24, 2015

(joint work with Calin Lazaroiu) M-theory foliated backgrounds and non-commutative geometry



Outline

@ Introduction
@ M-theory flux compactifications to AdS3
@ A topological no-go theorem on the internal space

@ The Kahler-Atiyah bundle formulation

© The case when NV = 1 supersymmetry is preserved on AdS3
@ The everywhere non-chiral case
@ Solving the supersymmetry conditions
@ Intrinsic and extrinsic geometry of the foliation
@ Topology of the foliation
@ Non-commutative geometry of the foliation

@ The not everywhere non-chiral case

@ Further directions — new insights into the N/ = 2 case

ith Calin Lazaroiu) M-theory foliated backgrounds and non-commutative geometry



Introduction

Motivation

We want to describe the geometry and topology of the most general 8-dimensional
backgrounds with fluxes which preserve a certain amount of supersymmetry when
compactifying M-theory (11-dim SUGRA) to AdS3 manifolds.

M=M3><Mg
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Introduction

Compactifications down to AdS;

SUGRA action in 11 dimensions (involving the SUGRA fields g, C, W):

1 1
Si1 = /duy [RV - EG A *G — gG AGA C] + terms involving W

@ The metricon M = M3 X M is a warped product:

ds?; = e*A(ds? +ds?) , Ae C®(M,R) .

G=dC=¢e*G , G=volsAf+F, feQ(M), FeQ*M)

@ Susy conditions: | i,W =Dn =0

n=e?n with n=C®E , C€M(Ms,S3), £€T(M,S),

For ¢ a Killing spinor on M3, susy conditions = CGKS equations on Mjg:

Dm$:Q§:0 ) Dm:Vm“l'Am
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Introduction

M-theory flux compactlflcatlons to A

A tog

The chiral and nonchiral loci on the internal manifold

g=etre L & a0 erM st S=Stes

1
1P = NEXP+1IETIP =1, b=lE" P~ €717 <= Hfin:E(lib)

When N = 1 supersymmetry is preserved on the external space, one may have:
o & is everywhere chiral = no fluxes at the classical level, M has Spin(7) holonomy
o ¢ is everywhere non-chiral = regular foliation with leafwise G, structure
o ¢ is chiral somewhere but not everywhere = singular foliation with leafwise G
structure

In a general mathematical framework for supersymmetric flux compactifications a
global reduction of structure group does not exist. J

@ The purely non-chiral locus U/ (£ is Majorana, but not Weyl, b # +1):

U {pe Mle g STUS, ) = {pe MI& #0and &5 # 0} = {p € M|[b(p)| < 1}

o The chiral loci W+, W—:
def. — def. —
WHE {peMlg eSS, ieblp)=+1}, W S {peM|{eS, , ie b(p)=—1}
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Introduction

M-theory flux compactificati AdS3
A topological no-go theorem on the internal space

A topological no-go theorem

Bianchi identity and e.o.m. for G:
1
dG=0 <= dF=df=0 , d*G—l—EG/\G:O. (1)

Theorem. Assume the susy conditions, the Bianchi identity, the e.o.m. for G and the
Einstein equations are satisfied. There exist only the following 4 possibilities:

QU=M — WFr=w =0.
Q@ WFr=M = W~ =U=0. Then, £ € ST and is covariantly constant on M,
f = F = 0 while A = constant on M. Furthermore, M3 becomes Minkowski.

Q@ W =M =— W+ =U=10. Then, £ € S~ and is covariantly constant on M,
f = F = 0 while A = constant on M. Furthermore, M3 becomes Minkowski.

Q@ Wt #£0 and/or W™ # ) but both of them have empty interior. In this case, U
is dense in M and W = Wt UW™ = Fil{.
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The Kahler-Atiyah bundle formulation

Formulation through Kahler-Atiyah bundles

There is an isomorphic realization of the Clifford bundle C1(T*M) of T*M as the
Kahler-Atiyah bundle (AT*M, ), where the geometric product

0 AT*M X AT*M — AT*M is an associative (but non-commutative) fiberwise
composition which makes the exterior bundle into a bundle of unital associative
algebras and satisfies Chevalley’s formulas for w € QK(M) and X € T(M, TM):

Xu()w = Xﬁ/\w+X4w
w <>Xu = (—1)k(Xﬁ ANw — X_lw)

The geometric product expands as:

min(k,/) L
won= > (-1 lamw) Amn |

m=0

where w € QK(M) , n € Q/(M) and:

1
whon=wAn , wAk+177=mgm"(8me)Ak (Onam) , Am = ﬁ/\m~
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The case when A = 1 supersymmetry is preserved on AdS3

The N = 1 supersymmetry case

Theorem: Giving a globally-defined smooth pinor & € (M, S) satisfying the susy
conditions is equivalent to giving a globally-defined inhomogeneous form:

8
1 1
2 1 P v af)e N = (1 VY + 74 by) | € QM)

such that:

‘Vmézf[ﬁm,é]_, QE =0 )

where

gl =1, beC®®R,M), VeQ (M), YeQ*M), ZeQ*(M)

. L 1

Am =07 Am) = GemaF e, A O e
1 1 L

Q:y_l(Q):EdA—ng—TF_“V

. . K(k—1)
('Ya =% Yaj...a — (_1) 2

k(k—1)
Yay...ax » %(577a1...ak§) = (_1) 2 t%)(fv’)/al...akg))
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The everywh: iral case
The case when A = 1 supersymmetry is preserved on AdS3 n-chiral case

The non-chiral A/ =1 case

When ¢ is everywhere non-chiral on M (€T #£0, £~ # 0, thus |b| < 1 everywhere),
the Fierz identities are encoded by the relations:

E2=E , S(E)=1, 7(E)=E , |S+E)|=|b <1 (3)

and are equivalent with:

[VIP=1-b>>0
wwxZ =0, wwZ=Y—-bxY
(w(x2) A (2 A (xZ) = =6 <uAV,vAV >yv , Yu,ve QM)

The above system also implies: ||Z||> =7(1—b%) , ||Y]||? =7(1+ b?)

(r(w) = (~1) Tk, vk € Qk(M) )
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The everywhere non-chiral case
The case when A = 1 supersymmetry is preserved on AdS3 The nc non-chiral case

The Frobenius distribution defined by V/

Since V is nowhere-vanishing, it determines a corank one Frobenius distribution
D = ker V C TM. We introduce the normalized vector field:

N v
nVE= =1,

vl

which is everywhere orthogonal to D and generates another integrable distribution D+
(since it has rankl1). This provides an orthogonal direct sum decomposition:

TM =D ¢ D+

D is transversely oriented by n. Since M itself is oriented, we define the longitudinal
volume form vt = 1pv = nw € Q'(D) :

Let x, : Q(D) — Q(D) be the Hodge operator along D :

* | W= *(\7 ANw) = (—1)rkwbv(*w) =7(wt , Ywe QD)
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The everywhere non-chiral case
The case when A = 1 supersymmetry is preserved on AdS3 The not non-chiral case

Non-redundand parametrization and the G, structure

Proposition. The Fierz identities (3) are equivalent with the following conditions:
VZ=1—-b , Y=(1+bv)y , Z=Vy ,
(ta) A (1pp) Ao = —6(a, BT , Vo,B€ QYD) ,

where 1) € Q*(D) is the canonically normalized coassociative form of a G, structure
on D compatible with the metric g|p induced by g and with the orientation of D,

while ¢ = * 1 1 € Q3(D) is the associative form of the G, structure.

From now on we shall use a new parametrization, in terms of b, V, 1, which is
non-redundant:

E:%(1+V+bu)(1+w):Pn ,

of. 1 of. 1
pd S+ V4 b) and n s

are commuting idempotents in the Kahler-Atiyah algebra.

(1+1)
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The everywhere non-chiral case
The case when A = 1 supersymmetry is preserved on AdS3 The non-chiral case

Parametrization of the 4-form fluxes

Since any form can be decomposed into parallel and orthogonal parts to any one-form,

we have: R R
F=F, +VAFr , f=f +fV

with components F, , Fr,f) , fr € Q7(M, D) living on the 7-dim. distribution.
The Gy structure gives decompositions:
FL=FD 4 FD L FED = FD L FS) ¢ o4(m, D)
(27)

Fr=FY 4 FO L8 = FD L F®) codm,p) , D=TF

with the parametrization:

~ 4 ~
FO = arng . FO = _hyef Ay = —trg(R)g — AO ek A v

7 s 3 0
FO = i, F) = ek Ao = Strg()e + XDk A

a1, az € QY(M, D) and h, x are symmetric tensors.

(joint work with Calin Lazaroiu) M-theory foliated backgrounds and non-commutative geometry 12/26



The everywh: iral case
The case when A = 1 supersymmetry is preserved on AdS3 e not n-chiral case

Solving the supersymmetry conditions

Theorem 1. Let ||V|| = /1 — b2. Then the Q-constraints (Q¢ = 0 <= QE = 0) are
equivalent with the following relations, which determine (in terms of A, b, v and f)

the components of F(l), FJ(_I) and F-(:), Ff):

a; = ———(f —3bdA)
2HVII
L (bf —3dA)
Q= — - 1
2VI] X
~ 3 )
trg(h) = ——trg(h) = ———(bf — 3dA
re(F) =~ ra(h) = 5 T,
3
trg(x) = —-t =3k f —3bdA
rg(R) 2trs(x) 2HVH( )T
. . . (27) (27)
Notice that the Q-constramts do not determine the components FT and FJ_ .
F(fn = — ( N L F(T27) = —xg,))ek AtLgip
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The case when A = 1 supersymmetry is preserved on AdS3

Solving the supersymmetry conditions

The differential constraints (Dmé& = 0 <= VnE = —[Apn, E]_) imply (using also the
results of the algebraic constraints), among many other relations :

dV =3V A (dA),

Since M is compact and connected and V is nowhere vanishing, it follows that D is
Frobenius integrable and hence it determines a codimension one foliation F of M,
D=TF.

Thus, the Gy structure of D becomes a leafwise Gp structure on F.

All leaves of F are diffeomorphic with each other. The complementary distribution ’Qi
determines a foliation FL+ , DL = TFL | whose leaves are integral curves of n = (%3
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The everywhere non-chiral case
The case when A = 1 supersymmetry is preserved on AdS3 The non-chiral case

Intrinsic and extrinsic geometry of the foliation

The fundamental equations of the foliation are given by:

Von=H (Ln),
Vx, n=—-AXy (Ln),
Va(X1) = —g(H,X1)n+ Dn(X1) ,
Vx, (Y1) =V, (Y1) +&(AXL, Yi)n.
Also:
Dhp =390 , Dip=-30n¢p , ¥eQYD). (5)

The torsion forms 7, € Q¥(M, D) of the longitudinal G, structure are uniquely
determined by the definitions:

diyp=4n A +x110, dl¢270¢+37'1/\90+*L7'3‘
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The everywhere non-chiral case

The case when A = 1 supersymmetry is preserved on AdS3 The not everywhere non-chiral case

Theorem 2. For ||V|| = v/1 — b2, the supersymmetry constraints are equivalent with the conditions:
@ The function b € C°°(M, (—1, 1)) satisfies:

e 324(32b) = f — 4x/1 — B2V (6)
@ The fundamental tensors H and A of FL and F are given by expressions in terms of b, A, f, F:
Hy = — HVHZ(ML —3(dAa)L ),
! © _ 0y i, L "
- _ 7] U - _ n _ A
AX| = i [(bxij g X e 4 - (1arb — Boxg (h) — 6b crg(x))xL]
@ The one-form ¥ € Q(D) is given by the following relation in terms of A, b and f:
9= ——— [~ (1+b))fL +6b(dA)] (8)
6l|VI|
@ The torsion classes of the leafwise Gy structure are given by expressions in terms of b, A, f, F:
4 1+ b?)fr — 6b(dA 3
o = [4“%], =_3@a), , m=o0,
71 2[ V]| 2 ©)
1 27 27
3= TVH(F(T )by FETY.
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The everywhere
The case wher = 1 supersymmetry is preserved on Ad The not everyw

Eliminating the fluxes

Theorem 3. The following statements are equivalent:

(A) 3 f € QY(M) and F € Q*(M) such that the susy equations admit at least one non-trivial solution & which is
everywhere non-chiral (and which we can take to be everywhere of norm one).
(B) 34 € C®(M,R), b € C®(M,(—1,1)), V € Q(M) and ¢ € Q3(M) such that:
1. these conditions are satisfied: .
IVIl=1, tge=0. (10)
The Frobenius distribution D def. ker V is integrable and we let F be the foliation which integrates it.
2. The quantities H, trA and ¥ of the foliation F are given by:

Hy = =5 (db) 1 +3(dd) 1
trA = 12(dA)+ — w — 8n# s (11)
1—p2 Vi—p?
PR L LS
6(1 — b2) 2

3.  induces a leafwise Gy structure on F whose torsion classes satisfy:

426(3+b%) 3b 14 b2

To= - | ———— — Z(dA)T + ———(db)T | ,

o="2] 2 AT+ g )] -
3

'rlzfg(dA)J_, T2 =0
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The everywhere non-chiral case
The case when A = 1 supersymmetry is preserved on AdS3 The nc non-chiral case

The explicit solution for the fluxes

Thus F and f are uniquely determined by b, A, V and ¢ (or v):

f=4kV + e 2d(e*b)

(a) F = —2trg(h)y . FY = trg(x)p = —4trg(R)p  with:

; 3HVH b v
trg(h) = ————(dA)T + 26b+ ———(db)T , trg(X) =k — (db)+
€ 2[|V|| € 2l|v]|
() FP=arng , FY =—i0u with:
1 b L3l
a1 = ————(db)1 , ax=———(db)L + ——(dA)L
2[|V]| 2| 2
(© FE = HO n i = xOk A i it
b 1
WO = — 2 [0, ¢ 073) + (i & )] = ——AD |
i 41v]| ’ Vil
1
0 . . (9
ij) = —W[(e,qgo, ejar3) + (i <> j)] — m :('j) ’

where [|V|| = v/T — b? and A® is the traceless part of the Weingarten tensor of F.
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The everywhere non-chiral case
The case when A = 1 supersymmetry is preserved on AdS3 The non-chiral case

Topology of F in the everywhere non-chiral case

Having obtained, from the supersymmetry conditions, that:
dw=0 , df=0 , w=f—db (w=4ke®V, f=¢e2f, b=ep)

w must belong to the cohomology class of f, f € H'(M, R), which cannot be zero
since V (and thus w) are nowhere-vanishing here, thus the first Betti number must be
positive, b1(M) > 0, which implies that the first homotopy group IM;(M) is non-trivial.

Integration of any element of f over closed paths provides a group morphism from the
first homotopy group to the additive group of R:

per; : M1 (M) — R

The character of the foliation depends on the rank p(f) of the period group img(per;)
called the irrationality rank of f.

o When p(f) = 1, we say that w is projectively rational (all periods of w can be
commonly rescaled to integers). The leaves of F are compact and coincide with
the fibers of a fibration h : M — SI.

@ When p(f) > 1, w is called projectively irrational and each leaf of F is
non-compact and dense in M. Hence F cannot be a fibration. The case when F
is not a fibration might also arise as a consistent background in M-theory.

(joint work with Calin Lazaroiu)
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The everywhere non-chiral case
The case when A = 1 supersymmetry is preserved on AdS3 The nc non-chiral case

Non-commutative geometry of the foliation

In the projectively irrational case, one can consider the C* algebra C(M/F) of the
foliation, which encodes the ‘noncommutative topology’ of its leaf space, being a
noncommutative torus of dimension equal to the irrationality rank.

Let IN; ~ Z” be the group of periods of f. Then C(M/F) is separable and Morita

equivalent with the crossed product algebra C(RR) x I;, which is isomorphic with
C(S') when p = 1 and with a p-dimensional noncommutative torus when p > 1.

/

R

Figure: The linear foliations of T2 model the noncommutative geometry of the leaf space of F in
the case p(f) < 2.
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The e N
The case when N = 1 supersymmetry is preserved on AdS3 The not everywhere non-chiral case

The not everywhere non-chiral case

When ¢ is allowed to become chiral on some locus W = W+ UW~ C M, W must be
a set with empty interior, which is therefore negligible with respect to the Lebesgue
measure of the internal space M. Thus, the behavior of geometric data along this

. . def. Lo
locus can be obtained from the non-chiral locus U =" M \ W through a limiting
process.

When (§ # W C M, the regular foliation F extends to a singular foliation F of the
whole manifold M by adding leaves which have singularities at points belonging to W.
This singular foliation F “integrates” the kernel distribution D of a closed one-form
w, which now can vanish at some points.

F carries a longitudinal G, structure which degenerates at the singular points.
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The e N
The case when N = 1 supersymmetry is preserved on AdS3 The not everywhere non-chiral case

Topology of the singular foliation — the foliation graph

The topology of singular foliations defined by a closed one-form can be extremely
complicated in general. The situation is better understood in the case when w is a
Morse one-form. The Morse case is generic, i.e. the Morse 1-forms constitute an
open and dense subset of the closed one-forms belonging to the cohomology class f.

In the Morse case, the singular foliation F can be described using the foliation graph,
which provides a combinatorial way to encode some important aspects of the
foliation's topology — up to neglecting the information contained in the so-called
minimal components of the decomposition, components which should possess a
non-commutative geometric description.

Figure: Example of a foliation graph
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The here non-chiral case

The case when N = 1 supersymmetry is preserved on AdS3 The not everywhere non-chiral case

The foliation graph for the regular foliation

In the everywhere non-chiral case &/ = M, the foliation graph is reduced to either a
circle (when F has compact leaves, being a fibration over S!) or to an exceptional
vertex (when F has non-compact dense leaves, being a minimal foliation). The
exceptional vertex corresponds to a noncommutative torus which encodes the
noncommutative geometry of the leaf space.

(a) Foliation graph when W = and p(w) = 1. (b) Foliation graph when W = 0 and p(w) > 1.

Figure: The foliation graph for the A" = 1 everywhere non-chiral case, i.e. when U = M
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Further directions — new insights into the N/ = 2 case

Further directions — new insights into N’ = 2 case

Using the 2 Majorana spinors £1,&> one can construct :

by = B(&1,v7(v)&1) , ba = B(&2,7(v)E2) , bz = B(&1,7(v)€2)
Vi = B(&1,va61)e? , Vo = B(&2,v262)e” , V3 def- B(&1,7a62)e?
W Ly B, v (v)e)e?

plus many higher order forms.

We use in this case the theory of semialgebraic sets with Whitney stratifications.
In this case we have 2 distributions:

D er Vi Nker Vo Nker V3 = ker V. Nker V_ Nker V3,

1
Do ker Vi Nker Vo Nker Vs Nker W C D | Vi=_(Vi+ V)

and three types of stratifications (which do not coincide as in the ' = 1 case):
o chirality stratification
o stabilizer stratification

@ rank stratification
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Further directions — new insights into the N/ = 2 case

We have 2 semialgebraic sets represented as the body R and the body 18
- 1113 2 2 def. _ _1
R ={(bs;b—,b3) € [-L, 1" | \/bZ + b5 ="p<1—1|b|} , bs = (b1 Ebr)
def. def.
P (b5 eRbER & 6L 3 +(|Vall2 = /B2 +[[V_| € [p, /1~ B2]}

b (b b, by}

‘R-description Hp o (p) o_(p)
Soz b~1(85 R) SU(4) 2 0
Sxo b=1(8y R) SU(4) 0 2
S11 b—1(8D) 1 1
S12 b~ 16 R) SU(3) 1 0
Sn b—1(8; R) SU(3) 0 1
g b~ 1(IntR) SU(2) or SU(3) 0 0

Figure: The body R
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Further directions — new insights into the N/ = 2 case
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