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What is Integrability? - no clear-cut answer; related to solvability in elementary
functions (strong arbitrariness)

A closed form general solution is not equivalent with integrability.

Logistic map in the chaotic region

Ynt+1 = 4}’:1(1 - }/n)

has general solution

Yn = %(1 —cos(2"q)) (1)
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What is Integrability? - no clear-cut answer; related to solvability in elementary
functions (strong arbitrariness)

A closed form general solution is not equivalent with integrability.

Logistic map in the chaotic region

Ynt+1 = 4}’:1(1 - }/n)

has general solution
1
v =51~ cos(2"a)) (1)

and the " butterfly effect” is seen from::

dyn

1
o = 52" cos(2"¢p) (2)

So the equation is solvable but chaotic (more precisely is in the ergodic region)
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Characterisation of integrability
@ Globally - huge amount of hidden symmetry, which gives predictability and
accuracy (information of initial data is preserved unlike attractors which absorb
information)
@ It is not strictly related to explicit knowledge of solution but rather global
information on the long time behaviour emerging from symmetries and integrals
@ Singularities play a crucial role since they become movable (dependent on initial
conditions and integration constants) - in contrast with linear dynamical
systems.
Examples:
w+w?P=0, w=(z—q)"
2w +uwd=0, w=(z—q) ?
ww” —w' +1=0, w=(z-c)log(z— o)+ a(z— c)

V3ww” — (1 —V3)w? =0, w=a(z— co)\/§

(ww” — w2 +4zw® =0, w= aelz—a) ™"
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Characterisation of integrability

@ Globally - huge amount of hidden symmetry, which gives predictability and
accuracy (information of initial data is preserved unlike attractors which absorb

information)
@ It is not strictly related to explicit knowledge of solution but rather global
information on the long time behaviour emerging from symmetries and integrals

@ Singularities play a crucial role since they become movable (dependent on initial
conditions and integration constants) - in contrast with linear dynamical
systems.

Examples:
w+w?P=0 w=(z—cq)!

2w +uwd=0, w=(z—q) ?
ww” —w' +1=0, w=(z-c)log(z— o)+ a(z— c)
V3ww” — (1 —V3)w'2 =0, W:oz(z—co)\/§

(ww” — w2 +4zw® =0, w= aelz—a) ™"

Integrability is not compatible with any kind of branching proliferation or essential

singularities (Painleve property)

Adrian-Stefan Carstea



Generalities
Characterisation of integrability

Basics Integrability detectors
Cellular automata

Historical evolution can be roughly divided into some periods:

@ 1970-1985: Soliton equations - developing of IST, bilinear formalism,
bi-hamiltonian structure, culminating with Jimbo-Miwa theory of integrable
hierarchies.

@ 1980-1985: Quantum IST - Faddev group, discovery of quantum groups
(Jimbo-Drinfeld)

@ 1990-2002: Discrete mappings(nonlinear ordinary difference equations) :
developing of main tools for discrete integrability, culminating with Sakai
classification of discrete Painleve equations

@ 2002-present: Discrete geometry, tropical geometry, ultradiscrete equations, new
views on lattice soliton equations

They triggered the development of other fundamental results in String Theory:
WDVV equations and TFT as integrable systems (Dubrovin 1993), KdV-hierarchy
describing the intersection numbers on the moduli stack of algebraic curves
(Witten-Kontsevich 1990), Seiberg-Witten theory etc.
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Three main approaches:

1. Singularities and integrals (using IST, symmetries, bi-hamiltonian structures,
hierarchies etc):

A non-hamiltonian ODE example - Lorenz system

Imposing that the general solution to have movable singularities at worst poles we get
the integrability condition (b, o, r) = (0,1/3, free) and it gives the following
time-dependent integral.

(—9x* + 16xy — 16x% + 12(z — r + 1)x?)e*/3 = K
Eliminating y, z one gets Painleve Ill equation (solvable by inverse monodromy

method)

X/2 ’ 1
o ixioC (3

X'x = x? +x* /4 —Ke™#/3 =0 = X" =
X T X

by means of new variables:

x(t) = 2{e—f/3X(T), T=ce 3 c*—(BK)* =0
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Ut + 6ulyx + Uxx =0 (4)
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u(x, t) = 282 log 7(x, t)
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2. PDE case - computing multisoliton solution: Celebrated Korteweg de Vries
equation:
Ut + 6ulyx + Uxx =0 (4)

Substitution:
u(x, t) = 282 log 7(x, t)

Bilinear form:
(D:Dx + Df)re7 =0,  Dif eg=0)f(x+y)g(x—y)ly
Existence of general N-soliton solution equivalent with integrability:
N
T(x,t) = Z exp Z,u,-(k,-xf k?t)JrZA,-j(k,-,kj)u,'uj
{p1,...nn}€{0,1} i=1 i<j
Deep thing - Virasoro structure

Dxenx 0™ — (m _ n)e(m+n)x

Adrian-Stefan Carstea



Cellular automata

3.Inverse Spectral Method - the most powerfull; gives both integrals and solutions
2 3,3 3
L=09;+ u(x,t), B:6X+§u8X+ZuX (5)

OtL — [L, B] = ut + 6uux + U =0 (6)
It gives integrals:
In=Tr(L"),Vn
And the hierarchy:
6l
ut, = 8)(57[,17
Example: KdV-equation:
Uty + 6uux 4 uxx =0

Lax-5 equation:
Uty + (Uxxxx + 10uuxx + 5u>2( + 10U3)x =0

Lax-5 has the following Lax pair:
L=8+u

B = 1682 + 40ud? + 60ux0? + (50uxx + 30u?)dx + 150 + 30U
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Discrete equations

WHY DISCRETE?

@ Richer phenomenology, simpler form

@ Perhaps more fundamental than continuous equations
@ Easier to implement numerically
o

can simulate many continuous system in the same time (i.e. a discrete
equations can have many continuum limits

Example discrete KdV:

1 1
Xn+1,m+1 — Xnpm = | ——— — ———
Xn4+1,m Xn,m+1

Continuum limit:
E=e(n—m), 7= e3m,xn7,,, =1+ éu(E,T)
When € goes to zero the discrete KdV goes to

ur + auug + bugee =0
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It is easy to discretize an equation. It is extremely difficult to find an integrable
discretisation. One needs integrability detectors:

@ Lax pairs (L, B) - difficult in discrete setting

multi-soliton solution

hard/impossible to define symmetry and hamiltonian structure
singularity analysis (algebraic geometry techniques)

complexity growth, algebraic entropy

© © ¢ ¢ ¢

polyhedral consistency
Main results:
@ Construction of discrete Painleve equations (Ramani-Grammaticos)

@ Sakai classification - all integrable 2D nonlinear nonautonomous ordinary
difference as automorphisms of rational surfaces obtained by blowing up
projective plane in 9 points

@ Adler-Bobenko-Suris classification of lattice soliton equations
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Question: IS THERE LIFE AFTER DISCRETE INTEGRABILITY?
YES!!
ULTIMATE DISCRETIZATION
How to simplify a discrete equation such that to be almost linear but to retain
nonlinear dynamical behaviour? For this what is the simplest nonlinear function?
Lattice mKdV:
Xn,m+1 + aXn+1,m
Xnt1,m+1 = Xp,m ———————————
aXpn,m+1 + Xn+1,m
Use this:
Iimoelog(exl/€ +eX/e 4 4 &X/€) = max(Xq, ..., Xk)
€e—

Consider:
Xn,m = eXP(Xn,m/€)7 a= eXp(A/G)

In the limit of € — 0 one gets ultradiscrete mKdV
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Question: IS THERE LIFE AFTER DISCRETE INTEGRABILITY?

YES!!

ULTIMATE DISCRETIZATION

How to simplify a discrete equation such that to be almost linear but to retain
nonlinear dynamical behaviour? For this what is the simplest nonlinear function?

Lattice mKdV:

Xn,m+1 + aXn+1,m

Xp+1,m+1 = Xpom—
aXpn,m+1 + Xn+1,m

Use this:
lim elog(eXt/€ + &*2/c 4 . 4+ Xk/€) = max(Xq, ..., Xk)

e—0

Consider:
Xn,m = eXP(Xn,m/€)7 a= eXp(A/G)

In the limit of € — 0 one gets ultradiscrete mKdV
Xnvl,m+1 = Xntm + maX(Xn,m+17 A+ Xn+1,m) - maX(A + Xn,m+].~, Xn+17m)

Main motivation -t'Hooft idea:
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Question: IS THERE LIFE AFTER DISCRETE INTEGRABILITY?
YES!!
ULTIMATE DISCRETIZATION
How to simplify a discrete equation such that to be almost linear but to retain
nonlinear dynamical behaviour? For this what is the simplest nonlinear function?
Lattice mKdV:
Xn,m+1 + aXn+1,m
Xnt1,m+1 = Xp,m ———————————
aXpn,m+1 + Xn+1,m
Use this:
Iimoelog(exl/€ +eX/e 4 4 &X/€) = max(Xq, ..., Xk)
€e—

Consider:
Xn,m = eXP(Xn,m/€)7 a= eXp(A/G)

In the limit of € — 0 one gets ultradiscrete mKdV
Xnvl,m+1 = Xntm + maX(Xn,m+17 A+ Xn+1,m) - maX(A + Xn,m+].~, Xn+17m)

Main motivation -t'Hooft idea:

O xn,m = exp(Xn,m/€) & 1) = Aexp(3 S)
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Question: IS THERE LIFE AFTER DISCRETE INTEGRABILITY?

YES!!

ULTIMATE DISCRETIZATION

How to simplify a discrete equation such that to be almost linear but to retain
nonlinear dynamical behaviour? For this what is the simplest nonlinear function?

Lattice mKdV:

Xn,m+1 + aXn+1,m

Xp+1,m+1 = Xpom—
aXpn,m+1 + Xn+1,m

Use this:
Iimoe log(eX/€ + &*2/€ 4 . 4 &Xk/€) = max(Xy, ..., Xk)
€E—>
Consider:
Xn,m = eXP(Xn,m/€)7 a= eXp(A/G)

In the limit of € — 0 one gets ultradiscrete mKdV
Xnvl,m+1 = Xntm + maX(Xn,m+17 A+ Xn+1,m) - maX(A + Xn,m+].~, Xn+17m)

Main motivation -t'Hooft idea:
4 Xn,m = eXp()<n,m/€) g 1/) = Aexp(%S)

@ what is integrability here? (equations are piecewise linear, and may have new
solutions with no discrete correspondent
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higher order Painleve equations

higher order discrete mappings (extension of Sakai classification)
ultradiscrete integrability - arithmetic integrability
supersymmetric integrability

noncommutative integrability (open-closed TFT, noncommutative WDVV etc.)
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