Integrable Systems: Past-Present-Future Integrability of dynamical systems and rational elliptic surfaces

Adrian-Stefan Carstea

April 26, 2013
Research Group on Geometry and Physics
Department of Theoretical Physics IFIN-HH

- A. S. Carstea, T. Takenawa "Classification of discrete integrable mappings and rational elliptic surface (I)", [J. Phys. A: Math. Theor. 45, 155206, (2012)]
- A. S. Carstea, "On the geometry of Q4 mapping", [to appear in Contemporary Mathematics]
- A. S. Carstea, T. Takenawa, "A note on minimization of rational elliptic surfaces from birational dynamics", [to appear in Journal of Nonlinear Mathematical Physics - special issue Geometry of discrete equations]
- C. Babalic, A. S. Carstea, "On two integrable discretisations of generalised Volterra system" [J. Phys. A: Math. Theor. 46, 145205, (2013)]
- C. Babalic, A. S. Carstea, "On some new forms of lattice integrable equations" submitted to [J. Math. Phys.]

Papers in work:

- A. S. Carstea, C. Babalic "Lax pairs of higher order lattice soliton equations"

What is Integrability? - no clear-cut answer;

What is Integrability? - no clear-cut answer; related to solvability in elementary functions (strong arbitrariness)
A closed form general solution is not equivalent with integrability.

What is Integrability? - no clear-cut answer; related to solvability in elementary functions (strong arbitrariness)
A closed form general solution is not equivalent with integrability. Logistic map in the chaotic region

$$
y_{n+1}=4 y_{n}\left(1-y_{n}\right)
$$

What is Integrability? - no clear-cut answer; related to solvability in elementary functions (strong arbitrariness)
A closed form general solution is not equivalent with integrability.
Logistic map in the chaotic region

$$
y_{n+1}=4 y_{n}\left(1-y_{n}\right)
$$

has general solution

$$
\begin{equation*}
y_{n}=\frac{1}{2}\left(1-\cos \left(2^{n} c_{0}\right)\right) \tag{1}
\end{equation*}
$$

What is Integrability? - no clear-cut answer; related to solvability in elementary functions (strong arbitrariness)
A closed form general solution is not equivalent with integrability.
Logistic map in the chaotic region

$$
y_{n+1}=4 y_{n}\left(1-y_{n}\right)
$$

has general solution

$$
\begin{equation*}
y_{n}=\frac{1}{2}\left(1-\cos \left(2^{n} c_{0}\right)\right) \tag{1}
\end{equation*}
$$

and the "butterfly effect" is seen from::

$$
\begin{equation*}
\frac{d y_{n}}{d c_{0}}=\frac{1}{2} 2^{n} \cos \left(2^{n} c_{0}\right) \tag{2}
\end{equation*}
$$

So the equation is solvable but chaotic (more precisely is in the ergodic region)

Characterisation of integrability

Characterisation of integrability

- Globally - huge amount of hidden symmetry, which gives predictability and accuracy (information of initial data is preserved unlike attractors which absorb information)

Characterisation of integrability

- Globally - huge amount of hidden symmetry, which gives predictability and accuracy (information of initial data is preserved unlike attractors which absorb information)
- It is not strictly related to explicit knowledge of solution but rather global information on the long time behaviour emerging from symmetries and integrals

Characterisation of integrability

- Globally - huge amount of hidden symmetry, which gives predictability and accuracy (information of initial data is preserved unlike attractors which absorb information)
- It is not strictly related to explicit knowledge of solution but rather global information on the long time behaviour emerging from symmetries and integrals
- Singularities play a crucial role since they become movable (dependent on initial conditions and integration constants) - in contrast with linear dynamical systems.

Characterisation of integrability

- Globally - huge amount of hidden symmetry, which gives predictability and accuracy (information of initial data is preserved unlike attractors which absorb information)
- It is not strictly related to explicit knowledge of solution but rather global information on the long time behaviour emerging from symmetries and integrals
- Singularities play a crucial role since they become movable (dependent on initial conditions and integration constants) - in contrast with linear dynamical systems.

Examples:

$$
\begin{gathered}
w^{\prime}+w^{2}=0, \quad w=\left(z-c_{0}\right)^{-1} \\
2 w^{\prime}+w^{3}=0, \quad w=\left(z-c_{0}\right)^{-1 / 2} \\
w w^{\prime \prime}-w^{\prime}+1=0, \quad w=\left(z-c_{0}\right) \log \left(z-c_{0}\right)+\alpha\left(z-c_{0}\right) \\
\sqrt{3} w w^{\prime \prime}-(1-\sqrt{3}) w^{\prime 2}=0, \quad w=\alpha\left(z-c_{0}\right)^{\sqrt{3}} \\
\left(w w^{\prime \prime}-w^{\prime 2}\right)^{2}+4 z w^{3}=0, \quad w=\alpha e^{\left(z-c_{0}\right)^{-1}}
\end{gathered}
$$

Characterisation of integrability

- Globally - huge amount of hidden symmetry, which gives predictability and accuracy (information of initial data is preserved unlike attractors which absorb information)
- It is not strictly related to explicit knowledge of solution but rather global information on the long time behaviour emerging from symmetries and integrals
- Singularities play a crucial role since they become movable (dependent on initial conditions and integration constants) - in contrast with linear dynamical systems.

Examples:

$$
\begin{gathered}
w^{\prime}+w^{2}=0, \quad w=\left(z-c_{0}\right)^{-1} \\
2 w^{\prime}+w^{3}=0, \quad w=\left(z-c_{0}\right)^{-1 / 2} \\
w w^{\prime \prime}-w^{\prime}+1=0, \quad w=\left(z-c_{0}\right) \log \left(z-c_{0}\right)+\alpha\left(z-c_{0}\right) \\
\sqrt{3} w w^{\prime \prime}-(1-\sqrt{3}) w^{\prime 2}=0, \quad w=\alpha\left(z-c_{0}\right)^{\sqrt{3}} \\
\left(w w^{\prime \prime}-w^{\prime 2}\right)^{2}+4 z w^{\prime 3}=0, \quad w=\alpha e^{\left(z-c_{0}\right)^{-1}}
\end{gathered}
$$

Integrability is not compatible with any kind of branching proliferation or essential singularities (Painleve property)

Historical evolution can be roughly divided into some periods:

- 1970-1985: Soliton equations - developing of IST, bilinear formalism, bi-hamiltonian structure, culminating with Jimbo-Miwa theory of integrable hierarchies.
- 1980-1985: Quantum IST - Faddev group, discovery of quantum groups (Jimbo-Drinfeld)
- 1990-2002: Discrete mappings(nonlinear ordinary difference equations) : developing of main tools for discrete integrability, culminating with Sakai classification of discrete Painleve equations
- 2002-present: Discrete geometry, tropical geometry, ultradiscrete equations, new views on lattice soliton equations

They triggered the development of other fundamental results in String Theory: WDVV equations and TFT as integrable systems (Dubrovin 1993), KdV-hierarchy describing the intersection numbers on the moduli stack of algebraic curves (Witten-Kontsevich 1990), Seiberg-Witten theory etc.

Three main approaches:

1. Singularities and integrals (using IST, symmetries, bi-hamiltonian structures, hierarchies etc):

Three main approaches:

1. Singularities and integrals (using IST, symmetries, bi-hamiltonian structures, hierarchies etc):
A non-hamiltonian ODE example - Lorenz system

$$
\begin{aligned}
& x^{\prime}=\sigma(y-x) \\
& y^{\prime}=r x-y-x z \\
& z^{\prime}=x y-b z(x-y)
\end{aligned}
$$

Three main approaches:

1. Singularities and integrals (using IST, symmetries, bi-hamiltonian structures, hierarchies etc):
A non-hamiltonian ODE example - Lorenz system

$$
\begin{aligned}
& x^{\prime}=\sigma(y-x) \\
& y^{\prime}=r x-y-x z \\
& z^{\prime}=x y-b z(x-y)
\end{aligned}
$$

Imposing that the general solution to have movable singularities at worst poles we get the integrability condition $(b, \sigma, r)=(0,1 / 3$, free $)$ and it gives the following time-dependent integral.

Three main approaches:

1. Singularities and integrals (using IST, symmetries, bi-hamiltonian structures, hierarchies etc):
A non-hamiltonian ODE example - Lorenz system

$$
\begin{aligned}
& x^{\prime}=\sigma(y-x) \\
& y^{\prime}=r x-y-x z \\
& z^{\prime}=x y-b z(x-y)
\end{aligned}
$$

Imposing that the general solution to have movable singularities at worst poles we get the integrability condition $(b, \sigma, r)=(0,1 / 3$, free $)$ and it gives the following time-dependent integral.

$$
\left(-9 x^{4}+16 x y-16 x^{2}+12(z-r+1) x^{2}\right) e^{4 t / 3}=K
$$

Three main approaches:

1. Singularities and integrals (using IST, symmetries, bi-hamiltonian structures, hierarchies etc):
A non-hamiltonian ODE example - Lorenz system

$$
\begin{aligned}
& x^{\prime}=\sigma(y-x), \\
& y^{\prime}=r x-y-x z \\
& z^{\prime}=x y-b z(x-y)
\end{aligned}
$$

Imposing that the general solution to have movable singularities at worst poles we get the integrability condition $(b, \sigma, r)=(0,1 / 3, f r e e)$ and it gives the following time-dependent integral.

$$
\left(-9 x^{4}+16 x y-16 x^{2}+12(z-r+1) x^{2}\right) e^{4 t / 3}=K
$$

Eliminating y, z one gets Painleve III equation (solvable by inverse monodromy method)

$$
\begin{equation*}
x^{\prime \prime} x-x^{\prime 2}+x^{4} / 4-K e^{-4 t / 3}=0 \Longleftrightarrow X^{\prime \prime}=\frac{X^{\prime 2}}{X}-\frac{X^{\prime}}{T}+X^{3}-\frac{1}{X} \tag{3}
\end{equation*}
$$

by means of new variables:

$$
x(t)=\frac{2 i c}{3} e^{-t / 3} X(T), T=c e^{-t / 3}, c^{4}-(3 K)^{4}=0
$$

2. PDE case - computing multisoliton solution: Celebrated Korteweg de Vries equation:

$$
\begin{equation*}
u_{t}+6 u u_{x}+u_{x x x}=0 \tag{4}
\end{equation*}
$$

Substitution:

$$
u(x, t)=2 \partial_{x}^{2} \log \tau(x, t)
$$

2. PDE case - computing multisoliton solution: Celebrated Korteweg de Vries equation:

$$
\begin{equation*}
u_{t}+6 u u_{x}+u_{x x x}=0 \tag{4}
\end{equation*}
$$

Substitution:

$$
u(x, t)=2 \partial_{x}^{2} \log \tau(x, t)
$$

Bilinear form:

$$
\left(D_{t} D_{x}+D_{x}^{4}\right) \tau \bullet \tau=0, \quad D_{x}^{n} f \bullet g=\left.\partial_{y}^{n} f(x+y) g(x-y)\right|_{y}
$$

2. PDE case - computing multisoliton solution: Celebrated Korteweg de Vries equation:

$$
\begin{equation*}
u_{t}+6 u u_{x}+u_{x x x}=0 \tag{4}
\end{equation*}
$$

Substitution:

$$
u(x, t)=2 \partial_{x}^{2} \log \tau(x, t)
$$

Bilinear form:

$$
\left(D_{t} D_{x}+D_{x}^{4}\right) \tau \bullet \tau=0, \quad D_{x}^{n} f \bullet g=\left.\partial_{y}^{n} f(x+y) g(x-y)\right|_{y}
$$

Existence of general N -soliton solution equivalent with integrability:

$$
\tau(x, t)=\sum_{\left\{\mu_{1}, \ldots \mu_{N}\right\} \in\{0,1\}} \exp \left(\sum_{i=1}^{N} \mu_{i}\left(k_{i} x-k_{i}^{3} t\right)+\sum_{i<j} A_{i j}\left(k_{i}, k_{j}\right) \mu_{i} \mu_{j}\right)
$$

Deep thing - Virasoro structure

$$
D_{x} e^{n x} \bullet e^{m x}=(m-n) e^{(m+n) x}
$$

3.Inverse Spectral Method - the most powerfull; gives both integrals and solutions

$$
\begin{align*}
L= & \partial_{x}^{2}+u(x, t), \quad B=\partial_{x}^{3}+\frac{3}{2} u \partial_{x}+\frac{3}{4} u_{x} \tag{5}\\
& \partial_{t} L-[L, B]=u_{t}+6 u u_{x}+u_{x x x}=0 \tag{6}
\end{align*}
$$

It gives integrals:

$$
I_{n}=\operatorname{Tr}\left(L^{n}\right), \forall n
$$

And the hierarchy:

$$
u_{t_{n}}=\partial_{x} \frac{\delta I_{n}}{\delta u}
$$

Example: KdV-equation:

$$
u_{t_{3}}+6 u u_{x}+u_{x x x}=0
$$

Lax-5 equation:

$$
u_{t_{5}}+\left(u_{x x x x}+10 u u_{x x}+5 u_{x}^{2}+10 u^{3}\right)_{x}=0
$$

Lax-5 has the following Lax pair:

$$
\begin{gathered}
L=\partial_{x}^{2}+u \\
B=16 \partial_{x}^{5}+40 u \partial_{x}^{3}+60 u_{x} \partial_{x}^{2}+\left(50 u_{x x}+30 u^{2}\right) \partial_{x}+15 u_{x x x}+30 u u_{x}
\end{gathered}
$$

Discrete equations

WHY DISCRETE?

- Richer phenomenology, simpler form

Discrete equations

WHY DISCRETE?

- Richer phenomenology, simpler form
- Perhaps more fundamental than continuous equations

Discrete equations

WHY DISCRETE?

- Richer phenomenology, simpler form
- Perhaps more fundamental than continuous equations
- Easier to implement numerically

Discrete equations

WHY DISCRETE?

- Richer phenomenology, simpler form
- Perhaps more fundamental than continuous equations
- Easier to implement numerically
- can simulate many continuous system in the same time (i.e. a discrete equations can have many continuum limits
Example discrete KdV:

$$
x_{n+1, m+1}-x_{n, m}=\alpha\left(\frac{1}{x_{n+1, m}}-\frac{1}{x_{n, m+1}}\right)
$$

Continuum limit:

$$
\xi=\epsilon(n-m), \tau=\epsilon^{3} m, x_{n, m}=1+\epsilon^{5} u(\xi, \tau)
$$

When ϵ goes to zero the discrete KdV goes to

$$
u_{\tau}+a u u_{\xi}+b u_{\xi \xi \xi}=0
$$

It is easy to discretize an equation. It is extremely difficult to find an integrable discretisation. One needs integrability detectors:

It is easy to discretize an equation. It is extremely difficult to find an integrable discretisation. One needs integrability detectors:

- Lax pairs (L, B) - difficult in discrete setting

It is easy to discretize an equation. It is extremely difficult to find an integrable discretisation. One needs integrability detectors:

- Lax pairs (L, B) - difficult in discrete setting
- multi-soliton solution

It is easy to discretize an equation. It is extremely difficult to find an integrable discretisation. One needs integrability detectors:

- Lax pairs (L, B) - difficult in discrete setting
- multi-soliton solution
- hard/impossible to define symmetry and hamiltonian structure

It is easy to discretize an equation. It is extremely difficult to find an integrable discretisation. One needs integrability detectors:

- Lax pairs (L, B) - difficult in discrete setting
- multi-soliton solution
- hard/impossible to define symmetry and hamiltonian structure
- singularity analysis (algebraic geometry techniques)
- complexity growth, algebraic entropy
- polyhedral consistency

Main results:

- Construction of discrete Painleve equations (Ramani-Grammaticos)
- Sakai classification - all integrable 2D nonlinear nonautonomous ordinary difference as automorphisms of rational surfaces obtained by blowing up projective plane in 9 points
- Adler-Bobenko-Suris classification of lattice soliton equations

Question: IS THERE LIFE AFTER DISCRETE INTEGRABILITY?

Question: IS THERE LIFE AFTER DISCRETE INTEGRABILITY? YES!!

Question: IS THERE LIFE AFTER DISCRETE INTEGRABILITY?

YES!!

ULTIMATE DISCRETIZATION

How to simplify a discrete equation such that to be almost linear but to retain nonlinear dynamical behaviour? For this what is the simplest nonlinear function? Lattice mKdV:

$$
x_{n+1, m+1}=x_{n, m} \frac{x_{n, m+1}+a x_{n+1, m}}{a x_{n, m+1}+x_{n+1, m}}
$$

Use this:

$$
\lim _{\epsilon \rightarrow 0} \epsilon \log \left(e^{x_{1} / \epsilon}+e^{X_{2} / \epsilon}+\ldots+e^{X_{k} / \epsilon}\right)=\max \left(X_{1}, \ldots, X_{k}\right)
$$

Consider:

$$
x_{n, m}=\exp \left(X_{n, m} / \epsilon\right), a=\exp (A / \epsilon)
$$

In the limit of $\epsilon \rightarrow 0$ one gets ultradiscrete mKdV

Question: IS THERE LIFE AFTER DISCRETE INTEGRABILITY?

YES!!

ULTIMATE DISCRETIZATION

How to simplify a discrete equation such that to be almost linear but to retain nonlinear dynamical behaviour? For this what is the simplest nonlinear function? Lattice mKdV:

$$
x_{n+1, m+1}=x_{n, m} \frac{x_{n, m+1}+a x_{n+1, m}}{a x_{n, m+1}+x_{n+1, m}}
$$

Use this:

$$
\lim _{\epsilon \rightarrow 0} \epsilon \log \left(e^{X_{1} / \epsilon}+e^{X_{2} / \epsilon}+\ldots+e^{X_{k} / \epsilon}\right)=\max \left(X_{1}, \ldots, X_{k}\right)
$$

Consider:

$$
x_{n, m}=\exp \left(X_{n, m} / \epsilon\right), a=\exp (A / \epsilon)
$$

In the limit of $\epsilon \rightarrow 0$ one gets ultradiscrete mKdV

$$
X_{n+1, m+1}=X_{n, m}+\max \left(X_{n, m+1}, A+X_{n+1, m}\right)-\max \left(A+X_{n, m+1}, X_{n+1, m}\right)
$$

Main motivation -t'Hooft idea:

Question: IS THERE LIFE AFTER DISCRETE INTEGRABILITY?

YES!!

ULTIMATE DISCRETIZATION

How to simplify a discrete equation such that to be almost linear but to retain nonlinear dynamical behaviour? For this what is the simplest nonlinear function? Lattice mKdV:

$$
x_{n+1, m+1}=x_{n, m} \frac{x_{n, m+1}+a x_{n+1, m}}{a x_{n, m+1}+x_{n+1, m}}
$$

Use this:

$$
\lim _{\epsilon \rightarrow 0} \epsilon \log \left(e^{X_{1} / \epsilon}+e^{X_{2} / \epsilon}+\ldots+e^{X_{k} / \epsilon}\right)=\max \left(X_{1}, \ldots, X_{k}\right)
$$

Consider:

$$
x_{n, m}=\exp \left(X_{n, m} / \epsilon\right), a=\exp (A / \epsilon)
$$

In the limit of $\epsilon \rightarrow 0$ one gets ultradiscrete mKdV

$$
X_{n+1, m+1}=X_{n, m}+\max \left(X_{n, m+1}, A+X_{n+1, m}\right)-\max \left(A+X_{n, m+1}, X_{n+1, m}\right)
$$

Main motivation -t'Hooft idea:

- $x_{n, m}=\exp \left(X_{n, m} / \epsilon\right) \Leftrightarrow \psi=A \exp \left(\frac{i}{\hbar} S\right)$

Question: IS THERE LIFE AFTER DISCRETE INTEGRABILITY?

YES!!

ULTIMATE DISCRETIZATION

How to simplify a discrete equation such that to be almost linear but to retain nonlinear dynamical behaviour? For this what is the simplest nonlinear function?
Lattice mKdV:

$$
x_{n+1, m+1}=x_{n, m} \frac{x_{n, m+1}+a x_{n+1, m}}{a x_{n, m+1}+x_{n+1, m}}
$$

Use this:

$$
\lim _{\epsilon \rightarrow 0} \epsilon \log \left(e^{X_{1} / \epsilon}+e^{X_{2} / \epsilon}+\ldots+e^{X_{k} / \epsilon}\right)=\max \left(X_{1}, \ldots, X_{k}\right)
$$

Consider:

$$
x_{n, m}=\exp \left(X_{n, m} / \epsilon\right), a=\exp (A / \epsilon)
$$

In the limit of $\epsilon \rightarrow 0$ one gets ultradiscrete mKdV

$$
X_{n+1, m+1}=X_{n, m}+\max \left(X_{n, m+1}, A+X_{n+1, m}\right)-\max \left(A+X_{n, m+1}, X_{n+1, m}\right)
$$

Main motivation -t'Hooft idea:

- $x_{n, m}=\exp \left(X_{n, m} / \epsilon\right) \Leftrightarrow \psi=A \exp \left(\frac{i}{\hbar} S\right)$
- what is integrability here? (equations are piecewise linear, and may have new solutions with no discrete correspondent

Future directions:

- higher order Painleve equations
- higher order discrete mappings (extension of Sakai classification)
- ultradiscrete integrability - arithmetic integrability
- supersymmetric integrability
- noncommutative integrability (open-closed TFT, noncommutative WDVV etc.)
-

