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Motivation

Our first intention was to find a generalization of F-theory, which can be
interpreted as a decompactification limit of M-theory.

For this we analysed N = 2 warped flux compactifications of M-theory on an
8-manifold down to AdS3 spaces, a case which was not studied in its full
generality before (eliminating the Weyl condition on the spinors, which is not
necessary, but was used in the literature just for simplifying calculations)

The computations proved to be very difficult if performed in the standard way.

We propose a new approach, using geometric algebra.

This approach leads to beautiful sistematizations and very effective
computations which can be implemented in symbolic computation systems.

We created a code in Ricci-Mathematica that generalizes such computations.
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An example

Flux compactificatons - compactifications with fluxes on the internal background.

M̃ = Mint ×Mext

For any SUGRA on M̃ the supersymmetry conditions lead to the following constraints
on sections ξ of spin 1

2
(of the spin bundle Sint associated to the internal manifold

Mint of dimension d), called CGK spinor equations:

Dmξ = 0 , Dm = ∇S
m + Am , ∇S

m = ∂m + ωm|npγ
np

, m, n, p = 1, d

Q1ξ = ... = Qχξ = 0 , ∀ξ

Am and Qk are algebraic combinations of gamma matrices with coefficients which
depend on metric and fluxes.

These CGK(constrained generalized Killing) spinor equations are equivalent with:

∂mB(ξi , γ
A
ξj ) = B(ξi , [Dm, γ

A]−,◦ξj ) , ∀A = m1...mp , ∀p = 1, d

B(ξi , (γA ◦ Qk − Qt
k ◦ γ

A)ξj ) = 0 , ∀i, j, k

Notations and conventions:
(em)

m=1,d
=local frame of (Mint , g), with dual local coframe (em), em = gmnen ,

em1 ∧ ... ∧ emk = em1...mk , γ : ΛT∗Mint −→ End(Sint ) , γm = γ(em) , γm1...mk = γm1 ◦ ... ◦ γmk ,

γA can be any ordered gamma matrices γa1...ak , ∀k = 1, d

Elena-Mirela Babalic



Our group preprints and proceedings on this subject
Motivation

Supersymmetric flux compactifications
Geometric Algebra techniques

Generalities
An example

A central problem in the study of flux compactifications of supergravity
and string theories is finding geometric descriptions of supersymmetry
conditions for various backgrounds in the presence of fluxes.

Another issue – analyzing the Fierz identities (between bilinears in
spinors) in curved backgrounds for various dimensions and signatures is a
complicated task in supergravity and string theories. But the very
construction of many such theories relies in crucial ways on such
identities.
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N = 1 warped compactifications of 11-dim SUGRA on 8-manifolds to AdS3 spaces

M̃ = M8 ×M3

The fields of 11-dim SUGRA: g̃ , C̃ ∈ Ω3(M̃), Ψ̃A.

Fluxes: G̃ = dC̃ ∈ Ω4(M̃)

11-dim SUGRA has N = 1 SUSY, thus it has one SUSY generator η̃ (a Majorana
spinor of spin 1

2
).

Warp compactifications ansatz (with warp factor ∆):

ds̃2
11 = e2∆ds2

11 , ds2
11 = ds2

3 + gmndxmdxn , m, n = 1, ..., 8

η̃ = e
∆
2 η , η = ξ ⊗ ψ , ξ ∈ Γ(M8, S8) , ψ ∈ Γ(M3, S3)

G̃ = e3∆G , G = vol3 ∧ f + F , f ∈ Ω1(M8) , F ∈ Ω4(M8)

SUSY condition: δη̃Ψ̃A = D̃Aη̃ = 0 , A = 0, ..., 10

D̃A is the supercovariant connection, well known in the literature.
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SUSY condition D̃Aη̃ = 0 implies the following CGK spinor equations for ξ (since
we chose N = 1 on M8 there is only one independent ξ):

Dmξ = 0 , Dm = ∇S
m + Am , Am =

1

4
fpγm

pγ(9) +
1

24
Fmpqrγ

pqr + κγmγ
(9) (1)

Qξ = 0 , Q =
1

2
γm∂m∆−

1

288
Fmpqrγ

mpqr −
1

6
fpγ

pγ(9) − κγ(9) (2)

where γ(9) = γ1 ◦ ... ◦ γ8 and κ is a positive real parameter proportional to the square
root of minus the cosmological constant.

Relations (1) and (2) are equivalent to the system:

∂mB(ξ, γm1...mk ξ) = B(ξ, [Dm, γ
m1...mk ]−,◦ξ) , ∀k = 1...8

B(ξ, (γm1...mk ◦ Q − Qt ◦ γm1...mk )ξ) = 0 , ∀k = 1...8
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Due to the symmetry properties of the gamma matrices, one can built the following
spinor bilinears:

Km = B(ξ, γmξ) , Ym1...m4 = B(ξ, γm1...m4ξ)

Zm1...m5 = B(ξ, γm1...m5ξ) , Wm1...m8 = B(ξ, γm1...m8ξ)

These bilinears must satisfy the general Fierz identities for one spinor ξ.

The treatement of CGK spinor equations and Fierz identities is not done in a very
efficient and systematic way in the literature in general.

Very efficient IDEA (which goes back to Chevalley and Riesz):

Use geometric algebra approach to spinors, which means working with
differential forms (constructed as bilinears in spinors) instead of spinors.
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Geometric algebra is an approach to the differential and spin geometry of
(pseudo-)Riemannian manifolds (M, g) which allows for a synthetic and effective
formulation of operations on forms and form-valued spinor bilinears that can be
constructed using only the differential and Riemannian structure.

It employs the Kahler-Atiyah bundle (ΛT∗M, �), which is isomorphic to the Clifford
bundle Cl(T∗M), where � : ΛT∗M × ΛT∗M → ΛT∗M is the geometric product – an
associative (but non-commutative) fiberwise composition which makes the exterior
bundle into a bundle of unital associative algebras.

It allows for a powerful reformulation of the differential and spin geometry of
Riemannian manifolds, which is extremely effective in supergravity theories, especially
in the presence of fluxes.

Until now we have used the geometric algebra approach for:

automating the analysis of CGK spinor equations

automating the construction and analysis of Fierz identities

generalizing and reformulating Christian Bar’s cone formalism
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Mathematical setting

(M, g) is a smooth, connected, paracompact and oriented pseudo-Riemannian
manifold of dimension d = p + q (p and q are the numbers of positive and
negative eigenvalues of the metric tensor g).

ΛT∗M
def.
= ⊕d

k=0Λk T∗M is the exterior bundle of M

Ω(M)
def.
= Γ(M,ΛT∗M) is the space of inhomogeneous differential forms on M,

with fixed rank components Ωk (M) = Γ(M,Λk T∗M).

(∧T∗M, �) is the Kähler-Atiyah bundle of (M, g).

γ : (∧T∗M, �)→ (End(S), ◦) is a morphism of bundles of algebras, with S the
bundle of spinors over (M, g) and End(S) the bundle of endomorphisms of S .

The geometric product � implements Clifford multiplication ◦.
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The action of � : Ω(M)×Ω(M) −→ Ω(M) has the following expansion in terms of the
generalized products 4k : Ω(M)× Ω(M) −→ Ω(M):

ω � η =

[ d
2 ]∑

k=0

(−1)kω42k η +

[
d−1

2

]∑
k=0

(−1)k+1π(ω)42k+1 η , ∀ω, η ∈ Ω(M) ,

where 4k are the homogeneous components of � of degree −2k, constructed
recursively from wedge products and contractions:

ω40 η = ω ∧ η , ω4k+1 η =
1

k + 1
gab(ιeaω) ∧k (ιebη) .

Here, π is the parity automorphism of the Kähler-Atiyah bundle, defined through:

π(ω) =
d∑

k=0

(−1)kω(k) , ∀ω =
d∑

k=0

ω(k) ∈ Ω(M) , ω(k) ∈ Ωk (M) .

ι is the interior product, defined as the adjoint of the wedge product,

Elena-Mirela Babalic



Our group preprints and proceedings on this subject
Motivation

Supersymmetric flux compactifications
Geometric Algebra techniques

Generalities
Geometric algebra method
The same example - using this approach

Properties of the (real) volume form ν = e1 ∧ ... ∧ ed :

ν � ν = (−1)q+[ d
2 ]1M =

{
(−1)

p−q
2 1M , if d = even

(−1)
p−q−1

2 1M , if d = odd
,

ν � ω = πd−1(ω) � ν , ∀ω ∈ Ω(M) .

Hence ν is central (ν � ω = ω � ν) when d is odd and twisted central
(ν � ω = π(ω) � ν) when d is even.

ν � ν = +1 ν � ν = −1
ν is central 1, 5 3, 7

ν is twisted central 0, 4 2, 6

In table we indicate the values of p − q (mod 8) for the corresponding properties.

Ordinary Hodge operator ∗: ∗ω = ιων = τ(ω) � ν , ∀ω ∈ Ω(M)

Twisted Hodge operator ∗̃: ∗̃ω = ω � ν , ∀ω ∈ Ω(M)

τ(ω) = (−1)
k(k−1)

2 ω , ∀ω ∈ Ωk (M) is the main antiautomorphism, called reversion.

Twisted (anti-)selfdual forms: ∗̃ω = ±ω , ∀ω ∈ Ω(M).
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The effective domain of definition of γ

γ : (∧γT∗M) −→ End(S)

∧γT∗M
def.
=

{
∧T∗M , if γ is fiberwise injective (simple case) ,
∧εγT∗M , if γ is fiberwise non− injective (non− simple case) .

∧εγT∗M is the bundle of twisted (anti-)selfdual forms (εγ ∈ {+1,−1}).
Ωεγ (M) = Γ(M,∧εγT∗M) is the associated space of twisted (anti-)selfdual forms.

γ injective non-injective
surjective 0, 2 1

non-surjective 3, 7, 4, 6 5

The numbers appearing in the table indicate the vaue of p − q(mod 8) .
When γ is injective Cl(p, q) is simple, for γ fiberwise non-injective it is non-simple.
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Schur algebras and representation types

The Schur bundle of γ is the commutant sub-bundle of the image of γ inside (End(S), ◦):

Σγ
def.

= {T ∈ End(S)|[T , γ(ω)]−.◦ = 0, ∀ω ∈ ∧T∗M}.

When γ is fiberwise-irreducible, Σγ is a bundle of simple associative algebras S, isomorphic with R, C or H.
In those cases, real spin bundles S are called: normal (R), almost complex (C) or quaternionic (H) and
the Schur algebra S depends only on p − q (mod 8).

Summary of spin bundle types:

S p − q
mod 8

∧T∗M
≈ Cl(p, q)

∆ N
Number of
choices for γ

γ(∧T∗M)

R 0, 2 Mat(∆,R) 2
[ d

2
]

= 2
d
2 2

[ d
2

]
1 Mat(∆,R)

H 4, 6 Mat(∆,H) 2
[ d

2
]−1

= 2
d
2
−1

2
[ d

2
]+1

1 Mat(∆,H)

C 3, 7 Mat(∆,C) 2
[ d

2
]

= 2
d−1

2 2
[ d

2
]+1

1 Mat(∆,C)

H 5 Mat(∆,H)⊕2 2
[ d

2
]−1

= 2
d−3

2 2
[ d

2
]+1

2 (εγ = ±1) Mat(∆,H)

R 1 Mat(∆,R)⊕2 2
[ d

2
]

= 2
d−1

2 2
[ d

2
]

2 (εγ = ±1) Mat(∆,R)

N
def.

= rkRS (the real rank of S), ∆
def.

= rkΣγ S (the Schur rank of S).

The non-simple cases are indicated in table through the blue color.
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In order to solve the CGK spinor equations and the Fierz identities in this approach we
use the basis elements for the Kähler-Atiyah algebra written as spinor bilinears:

Ěξi ,ξj
=

∆

2d

d∑
k=0

Ě
(k)
ξi ,ξj
∈ Ω(M)

Depending on the type of representation (R,C,H) one may have more admissible
pairings B, with properties (σB ∈ {+1,−1} and εB ∈ {+1,−1}) given in the
literature. Any choice of B gives equivalent results.

B(ξ, ξ′) = σBB(ξ′, ξ) , ∀ξ, ξ′ ∈ Γ(M, S)

B(γ(ω)ξ, ξ′) = B(ξ, γ(τB(ω))ξ′) , where τB
def.

= τ ◦ π
1−εB

2

The general CGK spinor relations:

∂mB(ξi , γ
A
ξj ) = B(ξi , [Dm, γ

A]−,◦ξj ) , ∀A = m1...mp , ∀p = 1, d

B(ξi , (γA ◦ Qk − Qt
k ◦ γ

A)ξj ) = 0 , ∀i, j, k

are equivalent to the geometric relations:

∇m Ěξi ,ξj
= −[Ǎm, Ěξi ,ξj

]−,� ⇐⇒ dĚξi ,ξj
= −em ∧ [Ǎm, Ěξi ,ξj

]−,�

Q̌k � Ěξi ,ξj
= 0 , ∀i, j, k

where Q̌k = γ−1(Qk ) and Ǎm = γ−1(Am)
Elena-Mirela Babalic
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Normal case (S ∼ R): p − q ≡8 0, 1, 2 , N = ∆ = 2[ d
2 ]

Ě
(k)
ξ,ξ′ =

1

k!
(εB)kB(ξ, γm1...mk ξ

′)e
m1...mk
γ , ∀ξ, ξ′ ∈ Γ(M, S)

The general Fierz identities can be equivalently expressed as geometric Fierz
identities through:

Ěξ1,ξ2
� Ěξ3,ξ4

= B(ξ3, ξ2)Ěξ1,ξ4
, ∀ξ1, ξ2, ξ3, ξ4 ∈ Γ(M, S) .

Summary of subcases of the normal case:

p − q
mod 8

Cl(p, q) εγ γ(ν) ν � ν ν
is central

0 simple N/A γ(ν) +1 No
1 non-simple ±1 ±1 +1 Yes
2 simple N/A γ(ν) −1 No

We have slightly different generators Ěξ,ξ′ and geometric Fierz identities for the
almost complex and quaternionic cases.
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The same example – One spinor in eight Euclidean dimensions (p = 8, q = 0)

d ≡8 0, p − q ≡8 0 =⇒ we are in the normal simple case, γ(ν) = idS8
.

We have 2 admissible pairing B on S8, but we choose to work with the one
with the properties σB = +1, εB = +1).

We can assume that B is a scalar product on S8 and we denote the norm || ||.

In the case of one spinor ξ ∈ Γ(M8,S8) we are interested in spinor bilinears such

as Ě(k) def.
= 1

k!
B(ξ, γa1...ak ξ)ea1...ak ∈ Ωk (M8) , ∀k = 1, 8.

We choose B(ξ, ξ) = 1. Using the properties of the bilinear pairing B one can
construct the form-valued bilinears:

K
def.

= Ě(1) = B(ξ, γmξ)em
, Y

def.
= Ě(4) =

1

4!
B(ξ, γm1...m4

ξ)em1...m4 ,

Z
def.

= Ě(5) =
1

5!
B(ξ, γm1...m5

ξ)em1...m5 , W
def.

= Ě(8) =
1

8!
B(ξ, γm1...m8

ξ)em1...m8 ∼ ν

In this case (N = 1) the Fierz algebra admits a single basis element Ě:

Ě =
1

2
[ d

2
]

8∑
k=0

Ě(k) =
1

16
(1 + K + Y + Z + bν) , where b ∈ C∞(M8,R)
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The differential constraints, Q-constraints and Fierz identities read:

dĚ = −em ∧ [Ǎm, Ě ]−,� (3)

Q̌ � Ě = 0 (4)

Ě � Ě = Ě (5)

Using our code in Mathematica-Ricci we obtain the following 3 systems of equations.

First, the differential constraints separated on ranks:

db = 2κ K +
1

2
ι∗Z F ,

dK = −
1

2
F 43 Y + ιf ∗ Z ,

dY = F 42 Z − 2f ∧ ∗Y − 2F ∧ K , (6)

dZ =
3

2
F 41 Y + 3ιf ∗ K ,

d ∗ Z = 2bF + 8κ Y − ∗(Y 42 F )− 2ιf Z .
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The Q-constraints separated on ranks:

−
1

6
ιF Y + ιd∆K − 2κb = 0 ,

−
1

6
ιF Z −

b

3
f + d∆ = 0 ,

d∆ ∧ K −
1

6
F 43 Y +

1

3
ιf ∗ Z = 0 ,

−
1

3
ιf ∗ Y + 2κ ∗ Z +

1

6
ιK F + ιd∆ −

1

6
F 43 Z = 0 ,

1

6
Y 42 F − 2κ ∗ Y +

1

3
f ∧ ∗Z −

b

6
∗ F + ιd∆Z −

1

6
F = 0 , (7)

−
1

6
F ∧ K + d∆ ∧ Y +

1

6
F 42 Z −

1

3
f ∧ ∗Y = 0 ,

d∆ ∧ Z +
1

3
ιf ∗ K +

1

6
F 41 Y = 0 ,

−
1

3
∗ f + 2κ ∗ K +

1

6
F 41 Z + b ∗ (d∆) = 0 ,

2κ ν −
1

3
f ∧ ∗K +

1

6
Y ∧ F = 0 .
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The rank components of the Fierz identities:

||K ||2 + ||Y ||2 + ||Z ||2 + b2 = 15 ,

ιY Z = 7K ,

−Y 42 Y − Z 43 Z + 2ιK Z + 2b ∗ Y = 14Y , (8)

−Y 42 Z + K ∧ Y = 7Z ,

Y ∧ Y + Z 41 Z = 14b ν .

Using (7), (6) and (8) one can solve the constraints and recover the results in the literature, some of which we list

below (for b = sin ζ, as chosen in the literature, [arXiv:hep-th/0306225]):

d(e3∆K) = 0

K ∧ d(e6∆ιK Z) = 0

e6∆d(e−6∆ ∗ Z) = − ∗ F + F sin ζ − 4κ Y

e−3∆d(e3∆ sin ζ) = f − 4κ K

||K ||2 = cos2 ζ , ||Z ||2 = 7 cos2 ζ

Y = ιK Z − (∗Z) ∧ K sin ζ

This example was chosen just to illustrate the method.
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