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Basics of Korteweg de Vries equation

Consider the following non-linear hyperbolic partial differential equation known as KdV

KdV equation

Equation form:
KdV : ut + 6uux + uxxx = 0

Here u = u(x , t) and ut , ux , uxx are partial derivatives with respect to t and x
We are interested in integrability of this equation; because we have many faces of integrability we
shall focus on bilinear/Hirota integrability

Motivation: KdV equations has linear and nonlinear part

and solutions behave differently:

KdV :


ut + uxxx = 0; u ≈

∑
i

eki x+ωi t − dispersion

ut + 6uux = 0; u(x , 0) = F (x)⇒ u(x , t) = F (x − 6tu(x , t))− collapse

If the dispersion of the wave packet is balanced by the collapse then the KdV-solution will be
stable - nonlinear mode=solitary wave (happens often in nonlinear equations)

If any strongly localised initial condition is developing into a train of solitary waves (nonlinear
modes) that interact elastically then we have multisoliton solution - a rare phenomenon occuring
only in completely integrable systems.
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Bilinear form of KdV

Bilinear idea is a substitution which swallow the nonlinearity and transform the KdV in
something whcih looks like a total dispersion - thus the self-organisation in nonlinear modes
becomes transparent

Hirota’s idea = key of bilinear formalism

Consider the following substitution u(x , t) = 2∂2
x log τ(x , t) and define the following

antisymmetric bilinear derivative acting on a pair of functions:

Dn
x f (x) · g(x) = ∂n

y f (x + y)g(x − y)|y=0

Introducing into KdV equation we’ll get an apparently more complicated expression but bilinear:

τxtτ − τxτt + τxxxxτ − 4τxxxτx + 3τ2
xx = 0

Dx (Dt + D3
x )τ · τ = 0

So now looking at the bilinear equation one can write immediately solutions as superpositions of
exponentials: Let ηi = ki x − k3

i t

τ1 = 1 + eη1 , τ2 = 1 + eη1 + eη2 + A12eη1+η2

τ3 = 1 +
3∑

i=1

eηi +
∑
i<j

Aij e
ηi +ηj + A12A13A23eη1+η2+η3
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Remarks

The red term is crucial. It happens only in completely integrable systems. So, if a PDE can
be put in a bilinear form and has at least 3-soliton solution (supports interaction of three
solitons) then the PDE is a completely integrable system.

Crucial property
∀AN

x (f , g) =
N∑

i=1

ci (∂
N−i
x f )(∂ i

x g), AN
x (eηf , eηg) = e2ηAN

x (f , g), iff

AN
x (f , g) = DN

x f · g ⇔ ci = (−1)i C i
N

Novikov, Dubrovin, Krichever extended this method and consider the most general
combination of exponentials together with their interaction

τ = Θ[α, β](z|B) =
∑

n∈Zg

exp{iπ[2 < (z + α), (n + β) > + < (n + α),B(n + α) >]}

z = (z1, ..., zg ) ≡ (k1x − ω1t, ..., kg x − ωg t), B = period−matrix

.

Sato, Jimbo and Miwa proved that the bilinear formulation can be done for any hierachy and the
bilinear equations are nothing but Plucker quadratic equation defining an infinite dimensional
grassmannian

Existence of 3-soliton (three-phase theta) solution in the bilinear form ⇔ complete integrability

A. S. Carstea (IFIN) Lattice supersymmetric Korteweg de Vries equation IMAR, March 19, 2015 5 / 21



Supersymmetric extension of KdV equation in N = 1 superspace

The basic idea is to consider coupled partial differential equations containing two dependent
variables (fields) u(x , t) and ξ(x , t) such that u : R2 → Λ0, ξ : R2 → Λ1 where Λ0 and Λ1 are the
even (bosonic) and odd (fermionic) sectors of an infinite dimensional Grassmann algebra
Λ = Λ0 ⊕ Λ1; it is a graduate modulo 2 algebra i.e. Λ0Λ0 ⊂ Λ0,Λ1Λ1 ⊂ Λ0,Λ0Λ1 ⊂ Λ1. Also when
ξ = 0 then we recover the usual KdV equation in the variable u.
Let us consider the following coupled system:

sKdV :

{
ut + uxxx + 6uux − 3ξξxx = 0,

ξt + 3(uξ)x + ξxxx = 0

invariant at the following transformations,

supersymmetry :

{
δu = γξx ,

δξ = γu

N = 1 Superspace: one can unify the above description by extending the R to a bigger one
containing two variables (x , θ) where θ is an anticommuting variable (and of course θ2 = 0). In
addition we unify the two fields u(x , t) and ξ(x , t) into a larger superfield which can be bosonic
(not interesting) or fermionic and have the expression, Φ(x , t, θ) = ξ(x , t) + θu(x , t). Also a
superderivative is introduced namely D = ∂θ + θ∂x which is practically a square root of usual
derivative D2 = ∂x . Accordingly the super-KdV equation will be written in superspace as

N = 1super − KdV :

{
u(x , t), ξ(x , t)→ Φ(x , t, θ) = ξ + θu,D = ∂θ + θ∂x ,

Φt + Φxxx + 3(ΦDΦ)x = 0
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Remarks

One can see immediately that supersymmetry transformation is nothing but a symmetry at the
translation in superspace with respect to anticommuting parameter γ

Φ(x , t, θ)→ Φ(x − γθ, t, θ + γ) = Φ(x , t, θ)− γθ∂x Φ + γ∂θΦ =

= Φ(x , t, θ) + δΦ(x , t, θ) = ξ + θu + δξ + θδu

The super-KdV equation is a completely integrable system introduced by Manin and Radul in
1985 and has the following Lax representation

∂t L = [−4L
3/2
+ , L], L = ∂x − ΦD,

∀P =
M∑

i=−∞
αi D

i ⇒ P+ =
M∑

i=0

αi D
i , sResP = α−1

It has two sets of conservation laws given by the following superresidues:

H2k+1 =

∫
dxdθsResL(2k+1)/2, J2k+1 =

∫
dxdθsResL(2k+1)/4

where superintegration is defined through the Berezin rules∫
dθ = 0,

∫
θdθ = 1

However Manin and Radul were not able to compute the general super-soliton solutions of
super-KdV equation
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Super-bilinear operator

In order to construct the bilinear form of super-KdV equation some bilinear operators are needed;
if we use antisymmetric derivatives it doesn’t work - accordingly we have to rely on a more
important property.

So we proved the following,
Theorem: A general superbilinear operator SN

x f · g =
∑N

i=1 ci (DN−i f )(D i g) has the property of
super-gauce invariance (i.e. Sn

x eaf · eag = e2aSN
x f · g , a = kx + ζθ) iff

ci = (−1)i|f |+i(i+1)/2

[
N
i

]
.

where the grassmann parity |f is defined through

|f | =

{
1, if f ∈ Λ1

0, if f ∈ Λ0

and the super-binomial coefficients are given by

[
N
i

]
=

C
[i/2]
[N/2]

, if (N, i) 6= (0, 1)mod2

0, otherwise

In this definition this opeartor is the square root of the Hirota operator SN
x f · g = D

1/2
x f · g
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Super-bilinear for super-KdV

In order to construct the bilinear form of super-KdV equation we consider the following nonlinear
substitution

Φ(x , t, θ) = 2D3 log τ(x , t, θ)

where τ is a commuting (even) superfunction and on the components is written as
τ = F + θG ,F ∈ Λ0,G ∈ Λ1

The bilinear forms on the superspace and on the ordinary space of the super-KdV

Φt + 3(ΦDΦ)x + Φxxx = 0,

will be,
(SxDt + S7

x )τ · τ = 0

equivalent with {
(Dt + D3

x )G · F =0

(DxDt + D4
x )F · F =2(Dt + D3

x )G · G

Now one can construct super-soliton solutions. If
ηi = ki x − k3

i t, αij = (ki + kj )/(ki − kj ),Aij = (ki − kj )
2/(ki + kj )

2, βij = 2/(kj − ki )

τ1 = 1 + eη+θζ

τ2 = 1 + eη1+ζ1θ + eη2+ζ2θ + A12(1 + 2β12ζ1ζ2)eη1+η2+θ(α12ζ1θ+α21ζ2)
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General N-supersoliton solution

τ3 = 1 +
3∑

i=1

eηi +θζi +
3∑

i<j

Aij (1 + 2βijζiζj )eηi +ηj +θ(αijζiθ+αjiζj )+

+

 3∏
i<j,k 6={i,j}

Aij (1 + 2βijαikαjkζiζj )

 eη1+η2+η3+θ(α12α13ζ1+α21α23ζ2+α31α32ζ3)

What is remarkable here is that the soliton interaction is no longer elastical. However it has a
rigurous pattern and can be constructed. The same type of interaction occurs in other
supersymmetric integrable PDEs. It was not obtained so far from the Lax pair and genralisation
to super-Riemann theta function is not known.

Big advantage of bilinear formalim: - it provides the integrable discretisation.
Motivations:

discrete nonlinear integrable systems are “more” fundamental having a deeper
phenomenology

all discrete nonlinear integrable systems are birational - more amenable to the tools of
algebraic geometry
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Bilinear integrable discretisation for KdV equation

For the moment we introduce the notations
Ā = A(n + 1,m), Ã = A(n,m + h), Ã = A(n − 1,m + h) with x = εn, t = hm. There are three
steps in discretizing a nonlinear system:

replace Hirota bilinear operators with difference ones preserving invariance with respect to
elinears

check the soliton solution
recover the nonlinear form

In the case of ordinary KdV we have u(x , t) = 2∂2
x log τ which is not nice (hard to discretize). We

prefer a form like u(x , t) = H/F . So we transform bilinear form. One can see immediately that if
∂x H = F then

(DtDx + D4
x )F · F ⇔

{
(Dt + D3

x )H · F =0

D2
x F · F −Dx H · F =0

so we prefer to work with the second bilinear system. The idea of discretisation of D is
straightforward, Dx f · g = fx g − fgx → (f (n + 1)− f (n))g(n)− f (n)(g(n + 1)− g(n)) = f̄ g − f ḡ .

(Dt + D3
x )H · F =0

D2
x F · F −Dx H · F =0

⇒

 H̃F − HF̃ + h( ˜̄HF − H ˜̄F ) =0

˜̄F F − F F̃ − ( ˜̄HF − H ˜̄F ) =0

Now if u = H/F then from the above bilinear system we get the integrable discrete KdV (in a
birational form):

ũ − u = h
˜̄u − u

1− ˜̄u + u
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Reductions

From the above KdV equation we can find the reduction to ordinary difference equation. If
u(n,m) = y(n,m) + (h + 1)n/2− hm,then we have

ũ − u = h
˜̄u − u

1− ˜̄u + u
→ (ỹ − y)(y − ˜̄y) = h

Reduction is done by considering combinations of the two independent variables in one.
Accordingly the resulting equation will be no longer partial difference but ordinary difference. For
instance if ν = n + m/h then we have

(ỹ − y)(y − ˜̄y) = h⇒ (ȳ − y)(y − ¯̄y) = h

(ȳ − y)(y − ¯̄y) = h ⇒︸︷︷︸
ȳ−y=q

q̄ + q + q =
h

q

Integrability of the mapping

q̄ + q + q =
h

q

is clear - it comes as a reduction of an integrable equation; but we need to know how to integrate
i.e.constructing the invariant. We will consider it as a birational map on projective plane:

ϕ : P1 × P1 → P1 × P1, ϕ(q, p) = (q̄, p̄) :


q̄ =p

p̄ =− q − p +
h

p
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Difference Equation as a Birational Map

What can go wrong? Recall our map: q̄ = p, p̄ = −q − p + h
p

.

q̄ =
f (q, p)

g(q, p)
=



0

1
= 0

1

0
=∞ if we compactify C to P1

0

0
=? indeterminate point, resolve using the blowup procedure

Step 1: Compactification from C2 to X = P1 × P1. X is a compact complex surface covered by
four charts, (q, p), (Q, p), (q,P), and (Q,P), where P = 1/p and Q = 1/q are the charts at
infinity. Also, for a compact surface, we can talk about the Picard Lattice:

Pic(X ) = Div(X ) = ZHq ⊕ ZHp , Hq • Hq = Hp • Hp = 0,Hq • Hp = 1

−KX = 2Hq + 2Hp — anti-canonical divisor (dual to the symplectic area form) ω = dq ∧ dp

q = 0 q =∞

Hq Hq

q̄ = 0 q̄ =∞

Hq̄ Hq̄

p = 0

p =∞

Hp

Hp

p̄ = 0

p̄ =∞

Hp̄

Hp̄
ϕ

(0, t)

Extending the map ϕ : P1 × P1 99K P1 × P1
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The Blowup Procedure

Pictorially we can visualize the blowup procedure as follows:

S

k = �1

k = �1

k = 0

k = 0

k = 1

k = 1

E

⇡

M � E

M
L

L � E

L •M = 1

L • E = M • E = 0

(L− E) • (M − E) = 0 and therefore

E • E = −1.

If L2 = L • L = m, then

(L− E)2 = m − 1.

The blowup (local picture)

Coordinate description of a blowup at an arbitrary point π(q0, p0) is as follows:

The two standard complex charts on P1 given by v = ζ0/ζ1 when ζ1 6= 0 and V = ζ1/ζ0

when ζ0 6= 0;

they induce two charts on S: (u, v), where (q, p, [ζ0 : ζ1]) = (u + q0, uv + p0, [u : 1]), and
(U,V ), where (q, p, [ζ0 : ζ1]) = (UV + q0,V + p0, [1 : V ]);

the exceptional divisor E is given by u = 0 or V = 0;

the transition functions are given by U = 1/v , V = uv .
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The Space of Initial Conditions

Step 2: Find the Indeterminate points of both the forward and the backward dynamic.


q̄ = p

p̄ = −q − p +
h

p

q = 0 q =∞

Hq Hq

p = 0

p =∞

Hp

Hp
π1

In the coordinates (P,Q):
q̄ =

1

P

p̄ =
−P − Q + hP2Q

QP
=

0

0
when Q = P = 0

So (Q,P) = (0, 0) (or (q, p) = (∞,∞)) is the indeterminate point of the dynamic.
Resolve it using the blowup procedure. In the blowup coordinates (u1, v1), Q = u1, P = u1v1:

q̄ =
1

u1
=∞,

p̄ =
−1− v1 + hu2

1v1

u1v1
=
−1− v1

0
=∞ on E1: u1 = 0 .
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The Space of Initial Conditions

Thus, ϕ(E1) = π̄1 = (∞,∞). In the blowup coordinates ū1 = 1
q̄

and v̄1 = q̄
p̄

we get
ū1 = u1 = 0

v̄1 =
v1

−1− v1 + hu2
1v1

=
v1

−1− v1

on E1: u1 = 0 .

which is a line so it is OK.
If, ϕ collapses E1 on a point with general coordinates π̄2(ū1 = a, v̄1 = b). (as in the picture) the
point would appear as an indeterminate point for the inverse map. Thus, we have to blowup
again at π2 and π̄2 and continue the process:

Hq Hq̄

Hp Hp̄

Hp − E1 Hp̄ − E1

Hq − E1 Hq̄ − Ē1

E1 Ē1

0

0

−1

−1

−1
π̄2

ϕ

Extending the map to ϕ : X 99K X

We do this until we resolve all the singular points and thus we construct the so called space of
initial conditions

Pic(X ) = ZHq ⊕ ZHp ⊕ (⊕8
i=1ZEi ),

Hq • Hq = Hp • Hp = Hq • E1 = Hp • E = 0,

Hq • Hp = 1, E • E1 = −1.
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Invariants

The complete resolution of indeterminacies gives the following bundle mapping

ϕ∗ : Pic(X )→ Pic(X ) :



Ē1 =2Hq + Hp − E2 − E3 − E6 − E7 − E8

Ē2 =Hq + Hp − E3 − E6 − E8

Ē3 =Hq + Hp − E2 − E6 − E8

Ē4 =Hq − E8

Ē5 =2Hq + Hp − E2 − E3 − E4 − E6 − E8

Ē6 =E1

Ē7 =Hq − E6

Ē8 =E5

H̄q =3Hq + 2Hp − E2 − E3 − E4 − 2E6 − E7 − 2E8

H̄p =2Hq + Hp − E2 − E3 − E6 − E8

One can see immediately that

ϕ∗(−KX ) = −KX , −KX = 2Hq + 2Hp − E1 − E2 − ...− E8

If the proper transform of −KX is f (q, p) ≡
∑2

i,j=0 aij q
2−i p2−j , f (Ei ) = 0, i = 1...8 and at least

one of aij contains a free parameter then we have a pencil of biquadratic curves, the free
parameter being the integral of motion
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Discretizing super-KdV

We have seen that the bilinear form of super-KdV is given by:

(SxDt + S7
x )τ · τ = 0

equivalent with {
(Dt + D3

x )G · F =0

(DxDt + D4
x )F · F =2(Dt + D3

x )G · G

Since in the discrete context the supersymmetry is broken we will focus on the second bilinear
system and apply the same procedure as in the ordinary KdV case. To make the long story short
we propose the following (remember G is an anticommuting function so G 2 = 0):

(Dt + D3
x )G · F =0

(DxDt + D4
x )F · F =2(Dt + D3

x )G · G
⇒


G̃F − GF̃ + h( ˜̄GF − G ˜̄F ) =0

H̃F − HF̃ + h( ˜̄HF − H ˜̄F ) =m1G̃G + hm2
˜̄GG

h( ˜̄F F − F F̃ )− h( ˜̄HF − H ˜̄F ) =m3G̃G + hm4
˜̄GG

For m1 = m2,m3 = m2 + m4 the system admits maximum 2-supersoliton solution
(nonintegrability). But for m2 = −2,m4 = 1 or m1 = −1,m3 = 0 the system admits
3-supersoliton solution. So we have two different integrable discretisations (and the soliton
interaction is different as well) having the same continuum limit
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The two integrable discretisations are the following. Considering ψ = G/F , u = H/F then

m2 = −2,m4 = 1

ψ̃ − ψ = h
ψ̃ − ψ

1− ũ + u

ũ − u = h
ũ − u

1− ũ + u
+

2− ũ + u

(ũ − u − 1)2
(ψ̃ − ψ)(ψ − ψ)

m1 = −1,m3 = 0

ψ̃ − ψ = h
ψ̃ − ψ

1− ũ + u

ũ − u = h
ũ − u

1− ũ + u
+

(1− ũ + u)ψ(ψ̃ − ψ) + ψ̃ψ

(ũ − u − 1)2
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Super-reductions

We can do the same trick of reducing the partiaol discrete super-partial difference equation to a
nonlinear super-diference equation. In the case of first discretisation we obtian the following
system (q = q(n) is commuting and ξ = ξ(n) is anticommuting):

q̄ + q + q =
h

q
−

h + q

q2
ξξ

ξ + ξ + ξ = −
ξ

q

Now the problem is but constructing the invariants. It is an order 4 mapping so we have two
invariants and moreover is defined on the projective space over a grassmann algebra¿ However it
can be simplyfied as follows. Multiply on the left the second equation with ξ and taking into
account that it is nilpotent we get

ξξ + ξξ = 0.

Defining In = ξnξn−1 ≡ ξξ then we get In = In+1,∀n so In is the first invariant. If from the initial
condition we put In = γ - a commuting (nilpotent) we will end up the the following

ϕ : Λ0P1 × Λ0P1 → Λ0P1 × Λ0P1, ϕ(q, p) = (q̄, p̄) :


q̄ =p

p̄ =− q − p +
h

p
− γ

h + p

p2

Blow up analysis failed inasmuch as singularities appear in points with non-invertible coordinates.
Fortunaltely we have the Lax pair of the above system and the second invariant is Tr(Lax)
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